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Lexicon of terms, abbreviations, symbols and acronyms 

±  plus or minus 

+  positive, e.g. a substance is present in tissue during pathological testing;  
BC+ = history of breast cancer; hormone+ = positive test for hormonal 
receptors 

-  negative, e.g. a substance is not present in tissue during pathological 
testing; BC- breast cancer free; ER- estrogen receptor negative 

~  approximately 

∆  delta: change in, or difference between.  ∆2 is a change of 2  

>, ≥ greater than, greater than or equal to 

< , ≤ less than, less than or equal to 

   

2D two dimensional  

3D three dimensional  

95%CI 95% Confidence Interval, approximately two times the standard 
deviation (SD) above and below the mean of a normally distributed 
variable.  See also SD, normally distributed, CI. 

  

ACR the American College of Radiology 

adjuvant  in addition to, additional.   

AI  aromatase inhibitor, e.g. anastrozole, letrozole, exemestane.  Used to 
reduce the amount of estrogen available to promote tumour growth by 
preventing the aromatase enzyme (a protein) to convert androgens 
(hormones) into estrogen.  See also SERM 

AIHW Australian Institute of Health and Welfare 

anastrozole 
ANAS 

an aromatase inhibitor (AI).  Anastrozole inhibits the production of 
estrogen in the body by blocking the enzyme aromatase.  In post-
menopausal women, the primary source of estrogen is from the 
conversion of androgens to estrogen in the peripheral tissue via the 
enzyme aromatase. See also estrogen 

ANZ BCTG   Australia New Zealand Breast Cancer Trials Group; original name for 
the (Australian) Breast Cancer Trials (group) 

ATAC breast cancer trial ‘Arimidex, Tamoxifen, Alone or in Combination’ 
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AUC area under the curve, an estimate of the goodness of fit of ‘receiver 
operator characteristic’ plots.  An AUC of 0.5 is equivalent to chance 
(i.e. the risk model is no better than chance at estimating the likelihood 
an outcome will occur). An AUC of 1.00 is a perfect fit, i.e. the model 
is able to predict the outcome with 100% accuracy.  Most current BC 
risk models (e.g. the Gail or Tyrer-Cuzick) yield AUC of about 0.6 in 
most populations. 

  

BC breast cancer.  Typically refers to invasive breast cancer, as opposed to 
non-invasive (in-situ) cancers.  See also in-situ, DCIS, LCIS 

BD breast density 

BI-RADS    the Breast Imaging – Reporting and Data System,  American College of 
Radiology (ACR) 

Bland Altman plot a statistical method used to assess agreement between two measurement 
techniques 

BMI body mass index: weight (kg)/(height (m))2.  Also known as the 
Quetelet index.  A BMI < 17 is typically considered to be underweight, 
18-25 normal weight, 26-29 overweight, 30-34 obese, 35+ very obese.  
BMI is also a significant modifier of percent density: as weight 
increases the amount of the fat in the breast also tends to increase.  
Thus BMI is inversely related to percent density. 

BMP BitMaP, a common image format 

BRCA BReast CAncer gene, e.g. BRCA1 or BRCA2 genetic mutations 

BreastScreen the Australian breast screening program, which is federally funded and 
available to all female Australian citizens and permanent residents aged 
40 and over.  Women aged 50-74 are specifically targeted to attend 
screening every two years 

BScreen BreastScreen (above) 

  

CI Confidence Interval, e.g. a 95% CI.  A range of values within which we 
believe, with a specific probability, that the population parameter will 
lie. A 95% CI, will include the population parameter 95% of the time 
(i.e. 19 in 20 cases). See also IQR, standard deviation, 95%CI 

CC  cranio-caudal (one of two standard views taken during mammography); 
see also MLO 

CCD  charge coupled device.  a type of photosensor used in digital imaging 

CINSW  the Cancer Institute New South Wales, Australia 

CMN Calvary Mater Newcastle hospital (Newcastle, Australia) 

CMN MD and AI 
substudy 

The name for the project which is the subject of this thesis 
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confidence interval  see CI 

CR computed radiography- x-ray imaging technique, which produces a 
digital (electronic) image via use of removable phosphor plates in a 
cassette. Use of CR cassettes in lieu of film cassettes enables a film 
mammography machine to produce digital images. See also DR (digital 
radiography) and film-screen mammography 

CRF case record forms: used to record (participant) data in clinical trials 

CRUK Cancer Research, United Kingdom 

CSIRO the Commonwealth Scientific and Industrial Research Organisation, 
Australia 

  

DA dense area (of the breast), often measured in mm2 or cm2 

DCIS Ductal Carcinoma In Situ, a non-invasive type of breast cancer which 
originates in the ducts of the breast.  The ducts provide a conduit from 
the lobular (milk-producing) tissue to the nipple.  See also LCIS 

dense tissue (of the breast):  the connective (stromal) and glandular (epithelial) 
tissues of the breast which are opaque during mammography.  The 
dense tissues appear white on mammograms.   

density breast density, in particular mammographic or percent 
(mammographic) density 

DEXA dual energy x-ray absorptiometry: bone density scan (also known as 
DXA) 

DICOM  digital imaging and communication in medicine: a standard for 
distributing and viewing medical images (e.g. x-rays, ultrasounds, MRI 
scans) 

DNA  di-nucleic acid, one of the chemicals which comprises the genetic 
material in living things 

DoF digital on film (an acronym created for use in this thesis): digital 
mammograms which have been printed to film instead of being retained 
in digital (fully electronic) format; DoF therefore differ from “original 
digital” mammograms.  See also original digital (mammogram) 

DR direct (digital) radiography: a type of x-ray imaging which is fully 
digital (fully electronic); a sensor in the mammography machine 
converts the photons generated by the x-ray beam directly into an 
(electronic) image; an intermediary cassette is not required to produce 
the electronic image. See also CR (computed radiography) and film-
screen mammography. 

DXA  dual energy x-ray absorptiometry: bone density scan (also known as 
DEXA)  

DV dense volume, the estimate of the total volume (cm3) of the breast 
occupied by dense tissue 
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DVD digital video disc 

ECM extracellular matrix, the connective tissues between cells in the body 

episode for this thesis, an episode is a visit to an imaging facility to undertake 
mammography (x-ray images of the breast) 

ER estrogen receptor 

ER+ estrogen receptor positive: signifies tissues that have tested positive (+) 
for the presence of estrogen receptors (ER) 

ER- estrogen receptor negative: signifies tissues that do not have, or are 
below the pathological testing thresholds for, estrogen receptors 

estrogen a hormone produced in humans which is responsible for the female sex 
characteristics. 

EXE exemestane, an aromatase inhibitor (AI) 

  

F test  statistical test named after statistician R. A. Fisher.  The F-test 
determines if two variances are equal.  The F-test uses the F-
distribution (a probability distribution), which is the ratio of two chi-
square distributions.  

film-screen 
mammography     

mammographic (breast imaging technique utilising x-ray imaging) 
technique in which x-rays are passed through a compressed breast.  The 
x-ray image is captured on a cassette under the breast which holds 
traditional photographic (silver coated) film.  See also CR (computed 
radiography) and DR (digital radiography). 

first degree relative a person’s mother, father, brother, sister, son or daughter.  See also 
second degree relatives 

first mammograms a term used in this thesis to signify the earliest mammograms for a 
participant collected for this project, i.e. baseline mammograms, or the 
earliest available mammograms if baseline images were not obtained 

follow up a clinic visit by IBIS-II participants to receive trial medication and 
provide trial follow up information such as treatment compliance 

  

genotype the genetic makeup of an organism.  Due to genetic interaction (e.g. 
‘dominant’ vs ‘recessive’ genes, imprinting and/or DNA methylation) 
not all genes are expressed and others vary in how much they are 
expressed; additionally, the environment of an organism affects how its 
genotype is expressed.  This results in each expression of a unique 
phenotype (observed characteristics) for each organism; phenotype can 
differ for two organisms even if genotype is identical. See also 
phenotype 

  

HER  human epidermal growth factor receptor 
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HER2+ human epidermal growth factor receptor 2 positive (+): tissue that tests 
positive (meets pathological minimum standards) for HER2 protein 
overexpression and/or HER2 gene amplification 

high PD percent density ≥ 50% 

HNE Hunter New England, a geographical region in New South Wales 
(NSW), Australia 

HNEH Hunter New England Health (one of 15 health districts in the state of 
New South Wales) 

HR hazard ratio.  A name for the relative risk ratio utilised in survival 
analysis. 

HREC human research ethics committee.  All research involving human 
participants must be approved by a human research ethics committee 
before the project commences.  

HRT  hormone replacement therapy.  Used to reduce the side-effects of 
menopause such as hot flushes.  HRT is associated with an increase in 
breast density.  Combination HRT (estrogen and progestin) is 
associated with an increase in breast cancer risk. 

   

IBIS  breast cancer prevention trial ‘International Breast cancer Intervention 
Study’ 

IBIS-I breast cancer prevention trial ‘International Breast cancer Intervention 
Study –I’ placebo vs tamoxifen 

IBIS-II  breast cancer prevention trial ‘International Breast cancer Intervention 
Study –II’; consists of the IBIS-II Prevention trial (IBIS-IIP) of 
anastrozole vs placebo for women at high risk of breast cancer, an 
IBIS-IIP bone-density substudy, and the IBIS-II Ductal Carcinoma In-
Situ (IBIS-II DCIS) trial of anastrozole vs placebo in women with 
diagnosed DCIS.  IBIS-II (unless otherwise specified) in this thesis 
refers only to the IBIS-II Prevention trial 

ICC intraclass correlation.  This assesses the similarity/relatedness  of 
observations within the same group (e.g. measurement time or 
mammographic technique).  

ID identification, e.g. an identification (ID) number replaces participant 
name in clinical trials 

incidence the number of new events during a particular span of time.  Cancer 
incidence typically is described as new cases of cancer diagnosed 
during a year per 100,000 members of population.  See also prevalence 

in-situ a cancer which does not typically invade the surrounding tissue.  See 
also BC, DCIS, LCIS 

IQR intra-quartile range: the range of values that fall between the lowest 
quartile (lowest 25% of values) and highest quartile (upper 25% of 
values); i.e. the middle 50% of an ordered range of values.   
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L left 

LCC cranio-caudal (CC)  view of the left breast taken during mammography 

LCIS  Lobular Carcinoma In Situ, a non-invasive form of breast cancer which 
originates in the lobular (lobes, milk-producing) tissue of the breasts. 
See also DCIS 

LET letrozole, an aromatase inhibitor (AI) 

LMLO medio-lateral oblique view of the left breast taken during 
mammography 

LOA limits of agreement, used to describe the highest and lowest values of 
the middle 95% of a set of values in a Bland Altman plot  

  

MAP breast cancer ‘Mammary Prevention Trial’ 1 (.1), 2 (.2) or 3 (.3) 

mammography a breast imaging technique in which x-rays  are passed through a 
compressed breast.  The x-ray image is captured on a cassette (film-
screen and computed radiography (CR)) or directly via a digital sensor 
(digital radiography (DR)).  

mammographic 
density  

the dense (white appearing) tissues of the breast as they appear on an x-
ray of the breast (mammogram). See also dense tissue, density 

MD mammographic (breast) density.  See also dense tissue. 

mean a measure of central tendency which is the average of a variable.  Used 
for parametric (normally distributed data).  See also median, CI, IQR.   

median a measure of central tendency which is the equivalent of the mean for 
non-parametric (non-normally distributed, skewed) numeric data.  The 
median is the value at the 50% percentile (quartile 2) of an ordered set 
of numeric data. See also mean, CI, IQR. 

MI, mi multiple imputation (a type of statistical estimation to account for 
missing data) 

MIRC  Medical Imaging Resource Centre of the Radiological Society of North 
America 

MLO medio-lateral oblique (one of two standard views taken during 
mammography); see also CC 

MRI medical resonance imaging 

  

n, N number (of), e.g. number of participants or mammograms 

NSABP National Surgical Adjuvant Breast and Bowel Project, USA 

NHMRC the National Health and Medical Research Council, Australia 

NHS the National Health Service, United Kingdom 
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NIH the National Institutes of Health, USA 

non-parametric numeric data which are non-parametric do not have a probability 
completely specified distribution which is not symmetrically bell-
shaped.  The types of statistical tests utilised on non-parametric data 
differ from those utilised on parametric (normal) data.  See also 
parametric 

normally distributed  numeric data whose probability distribution is in the shape of a 
symmetric bell.  The middle of the bell is the mean of the data. See also 
parametric, non-parametric 

NSW New South Wales, Australia 

  

OD optical density. An optical density of 0 is white; higher numbers (e.g. 
4.3) denote deeper blacks 

original digital 
(mammogram) 

a digital mammogram which was collected in its (original) fully 
electronic format; See also DoF (digital printed on film) 

  

PACS picture archiving and communication system: computer system used to 
view and store digital (electronic) medical images 

parametric numeric data which have a specified distribution, often a‘normal’ 
distribution.  Normally distributed data have a probability distribution 
which is bell-shaped.  Parametric distributions have special properties 
which enable use of specific statistical tests, such as the well known ‘t-
test’.  See also non-parametric. 

PD percent (mammographic) density.  The proportion of the total breast 
area which is covered by dense (connective and glandular) tissue 

phenotype the expressed characteristics of an organism, as determined by the 
genetic makeup of that organism and its interaction with the 
environment.  See also genotype. 

PLAC placebo 

PNG Portable Network Graphic, a common image format 

PR progestin receptor 

PR+ tissue that tests positive for progestin receptor 

prevalence the number of events which exist per head of population at a particular 
time.  Cancer prevalence is a count of all the people who are alive (at a 
particular point in time) after a cancer diagnosis, divided by the total 
population, expressed as a percentage or #/100,000. For instance, BC 
prevalence is increasing, not only because incidence (new BC cases) is 
increasing but because more and more women are surviving for many 
years post-diagnosis due to improvements in screening and treatment.  
See also incidence 

Prob, prob probability 
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Project team  Professor Forbes, Professor D’Este and Mrs Jobling  

  

Q1 quartile 1, the value which is located at the 25% percentile in an 
ordered set of numeric values; see also IQR 

Q3 quartile 3, the value which is located at the 75% percentile in an 
ordered set of numeric values; see also IQR 

QMUL the Queen Mary University of London, UK 

  

RCC cranio-caudal view taken of the right breast during mammography 

relative risk  see RR 

research team the project team: Professor Forbes, Professor D’Este and Mrs Jobling 

RLX  raloxifene, a serum estrogen receptor modulator (SERM) 

RMLO medio-lateral oblique view taken of the right breast during 
mammography 

RR relative risk, a ratio (comparison) of two probabilities of risk 

RSNA Radiological Society of North America 

  

SCC six category classification for percent density: 0%,  1 to 10%, 10 to 
25%, 25 to 50%, 50  to 75%, >75% [Boyd 1995] 

SD, sd standard deviation: the square root of the variance of a normally 
distributed (parametric) variable.  The sd is an estimate of the 
variability of a numeric quantity.  See also mean, median, confidence 
interval (CI) 

second degree 
relatives 

a person’s aunts, uncles, grandparents, grandchildren, first cousins 
(children of aunts and uncles).  See also first degree relative 

SERM serum estrogen receptor modulator, e.g. tamoxifen, raloxifene.  Used to 
prevent breast cancer by reducing the amount of estrogen available to 
promote tumour growth. SERMs work by competing with estrogen for 
estrogen receptors on cells, and in many cell types this reduces the 
growth promoting effects of estrogen on the tissues.  See also AI 

SNP single nucleotide polymorphism (‘snip’).  SNPs are differences at 
single points in DNA; a single nucleotide is changed at a particular 
point in a DNA strand (set of genes).  SNPs are markers of genetic 
differences between organisms.  Some SNPs are associated with 
increased risk of disease, others may indicate a reduced chance of 
developing an illness. 

standard deviation    see SD 
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TAM tamoxifen, a serum estrogen receptor modulator (SERM) 

TIFF Tag Image File Format, a common image format 

  

Tx treatment, treated 

Type a term utilised in this thesis to denote film vs digital mammograms (i.e. 
film and digital mammograms are different Types of mammograms); 
see also Version 

UK the United Kingdom 

US ultrasound or United States 

U.S., USA the United States (of America) 

  

Version a term utilised in this thesis to denote mammograms which were 
produced via different acquisition strategies. Digital mammograms 
produced from different equipment (e.g. different mammography 
machines) as well as different versions of software (e.g. different post-
processing algorithms) are considered to have different mammogram 
‘Versions’ in this thesis.  Film mammograms are also a different 
Version from digital mammograms.  see also Type 

very high PD percent density ≥ 75%  

VPD Volumetric percent density (cm3), the percentage of the breast volume 
which is occupied by dense tissues; VPD is typically estimated using 
‘raw’ (pre-processed) digital mammographic data 

VPD, AI and TAM 
project 

The name given in this thesis to a project which compared volumetric 
longitudinal MD measurements of AI and tamoxifen treated women 
diagnosed with breast cancer with longitudinal MD measurements of 
healthy controls:  

Engmann, N. J., et al. (2017). "Longitudinal changes in volumetric 
breast density with tamoxifen and aromatase inhibitors." Cancer 
Epidemiology Biomarkers & Prevention. 
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Synopsis 

Mammographic (breast) density is comprised of the glandular and connective tissues of the 

breast which appear dense (white) on mammograms, x-rays of the breast.  Reductions in both 

mammographic density and breast cancer risk are associated with estrogen lowering therapies 

(endocrine treatments) such as tamoxifen and the aromatase inhibitors.  The Primary Aim of this 

thesis was to compare the mammographic density response in women at high (2-fold) risk of 

breast cancer treated with the aromatase inhibitor anastrozole for breast cancer prevention in the 

International Breast (cancer) Intervention Study II (IBIS-II) trial with the mammographic 

density response in similar women randomised to placebo treatment, to ascertain if mammo-

graphic density may be a biomarker during endocrine therapy for breast cancer (prevention). 

 

The literature review undertaken for this thesis confirmed breast cancer is a heterogenous 

disease with many risk factors; many breast cancer risk factors are also factors associated with 

mammographic density. A measurement technique reliability analysis revealed mammographic 

density measurements made using visual assessment were less consistent than measurements 

made with a semi-automated thresholding technique.  A longitudinal statistical model of 

mammographic density change for120 Calvary Mater Newcastle hospital IBIS-II participants 

was developed using a mixed regression model.  The results for the Primary Aim show 

longitudinal change in mammographic density for anastrozole and placebo treated IBIS-II 

participants does not differ; this result however is constrained by the small number of 

participants sampled and confounded by frequent changes of the film and digital mammography 

equipment used to take the trial mammograms.  A sensitivity analysis undertaken with 

participants’ film mammograms only hints at a possible reduction in the rate of annual change 

in mammographic density for anastrozole treated participants relative to controls.  This latter 

result supports the recent findings of a volumetric mammographic density study which found 

significantly greater annual decreases in volumetric mammographic density for breast cancer 

cases treated with aromatase inhibitors compared to the rates of decrease in healthy controls.   
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Thesis Overview 

The first four chapters of this thesis comprise an introduction, a literature review, a project 

methods chapter, and a review of the techniques used to measure mammographic (breast) 

density.  Four analysis chapters follow.  The first analysis chapter investigates reliability of 

three different mammographic density measurement techniques (Chapter Five). In Chapter Six, 

Calvary Mater Newcastle hospital (CMN) International Breast Intervention Study II (IBIS-II) 

breast cancer prevention trial participant baseline characteristics are summarised, and assessed 

for associations with baseline measurements of mammographic density.  A longitudinal model 

of mammographic density change is developed for the aggregate of both treated and control 

CMN IBIS-II participants in Chapter Seven.  The final analysis (Chapter Eight) examines 

differences in longitudinal mammographic density for CMN anastrozole treated participants 

compared to placebo treated IBIS-II participants, the Primary Aim of this thesis. The thesis 

concludes with a Discussion chapter which is comprised of the overall conclusions from this 

body of work, future directions for research, as well as the strengths and limitations of this 

project.   
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1. Introduction 

Breast cancer is the most common cause of mortality from cancer for Australian women [1], and 

is the second most frequent cause of death from cancer for women globally [2].  The 

introduction of new treatments for cancer since the 1940s, such as chemotherapy and 

radiotherapy, to surgical therapy has greatly enhanced the life expectancy for people diagnosed 

with cancer, including women diagnosed with breast cancer (BC).  Despite a ‘war on cancer’ 

being declared in the 1970s in the United States [3, 4], cancer remains a problem for all 

societies across the globe and a major cause of morbidity and mortality. Great inroads have been 

made into the screening, diagnosis and treatment of breast cancer with early detection a key 

aspect in successful treatment.  

 

There are many well established risk factors for breast cancer, such as a family history of breast 

cancer (BC), being female, and increasing age [5].  Mammographic density is one of the 

strongest breast cancer risk factors [6] .  Mammographic density (MD) is composed of the 

ductal (glandular) and connective (stromal) tissues of the breast which appear white on 

mammograms (x-rays) of the breast.  The adipose (fatty) tissues of the breast are transparent to 

x-rays and appear dark on a mammogram.  The proportion of the total breast area covered by 

the dense white tissues is known as percent density (PD).  Higher amounts of dense tissue in the 

breast are associated with a higher risk of breast cancer, but it is not clear why this is so.   

For women of similar age and menopausal status, women with ≥75% PD are at a 3 to 5-fold risk 

of BC compared to women who have very low levels of PD (≤10%).  This makes breast density 

(BD) one of the strongest breast cancer risk factors, and one of the few strong (≥ 3-fold risk) 

risk factors that is modifiable.  However, most women have at least some dense breast tissue; 

highly adipose breasts are uncommon.  Hence when women with very high (≥ 75%) PD are 

compared at the population level to women with average density (25% to 49%), BC risk is 

doubled [7].  
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MD had been a controversial subject clinically since it was first described as a BC risk factor by 

John Wolfe in 1976 [8].  At that time, many radiologists thought MD solely masked BC, and 

did not consider it an independent BC risk factor [9].  Masking of BC by MD remains an 

important clinical issue, exemplified by the mandatory BD reporting legislation in many USA 

states [10].  The question of how to best image and care for women identified as having high 

MD remains open as no broad, population based clinical trials have reported on these issues 

[11].  A number of very large trials (>30,000 women), e.g. in Italy [TBST (Tailored Screening 

for BC in Premenopausal Women) [12]], the Netherlands [Breast Cancer Screening With MRI 

in Women Aged 50-75 Years With Extremely Dense Breast Tissue: the DENSE Trial [13]], the 

US [BCSC-ADVANCE (Assessing BD’s Value in Imaging) [14], and WISDOM (Women 

Informed to Screen Depending on Measures of Risk (Wisdom Study)[15]] are working towards 

redressing the issue of how to best screen women with dense breasts. . 

 

Use of MD and other measures of BD in BC prediction models such as the Gail model have not 

substantially increased the accuracy of BC prediction at the level of the individual [16].  

However, even amongst BReast CAncer 1 (BRCA1) mutation carriers who have an up to 80% 

lifetime risk of BC, it is not possible to accurately predict which individuals will develop BC, 

and which women will remain BC free.  Improvement in the ability to predict BC for all women 

remains an ongoing challenge.  Longitudinal MD changes during hormonal treatment to prevent 

BC may be a useful biomarker to improve BC risk prediction [17, 18]. 

 

Recent research has helped elucidate some of the cellular mechanisms that cause high MD.  

Low levels of the transmembrane receptor CD36 are associated with high mammographic 

density [19].  Low levels of CD36 are also associated with the dense tissues which often 

surround invasive breast cancer [19].  Additionally, overexpression of the inflammatory 

cytokine CCL2 is associated with increased density of murine breast stroma as well as an 

increased susceptibility to BC in mice; higher levels of CCL2 are also associated with high vs 



 Chapter 1 

5 

low areas of mammographic density in human breasts [20]. These associations of CCL2 with 

both high MD and increased BC risk provide a possible mechanism for the observed protective 

effect of aspirin on BC incidence [21] and a potential target to reduce BC risk and MD. 

 

Tamoxifen, a serum estrogen receptor modulator (SERM), reduces risk of breast cancer 

recurrence and also prevents breast cancer by blocking the stimulation of breast tissue by 

estrogen [22].  Tamoxifen reduces mammographic density, and strong (≥10%) decreases in PD 

in women treated with tamoxifen for BC prevention are associated with a 63% reduction in BC 

risk [17].  Tamoxifen has been shown to increase CD36 expression in vivo.   

 

The three aromatase inhibitors (AI) in common clinical use—anastrozole, letrozole and 

exemestane—prevent the aromatase enzyme from converting androgens to estrogens in 

peripheral tissues such as the breast [23].  Contralateral breast cancer is reduced by ~75% in 

women with hormone-sensitive early BC treated with five years of AI therapy [24].  AI 

treatment is associated with modest reductions in MD, however it is not yet known whether 

measureable changes in MD during AI therapy will be useful as an early biomarker for 

treatment efficacy. This thesis aims to explore whether changes in MD during preventive 

treatment for BC with anastrozole in healthy, high-risk women differ from those on placebo 

treatment.  This is important because early (1 year) reductions in MD associated with AI 

treatment may also be associated with reductions in future BC occurrence; alternatively if MD 

does not change during AI treatment, this may indicate other therapies should be pursued. 

 

Because up to 80 % of BC is hormone sensitive [25], AI have been trialled as BC preventive 

agents for post-menopausal women. The IBIS-II trial is an international BC prevention trial 

which compares five years of treatment with anastrozole to five years of placebo treatment for 

BC prevention in women at high (approximately 2-fold) risk of BC. At a median of five years of 

follow up, participants in IBIS-II randomised to active treatment with anastrozole were half as 
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likely to develop BC as participants randomised to placebo treatment [26].  A 60% relative 

reduction in the development of hormone-sensitive BC was seen for IBIS-II anastrozole treated 

participants relative to controls.  Similar improvements in disease free survival were seen during 

the Mammary Prevention Trial 3 (MAP.3) at three years of median follow up: participants 

randomised to exemestane treatment had a 65% relative reduction in BC incidence compared to 

those on placebo treatment [27]. 

 

Longitudinal MD changes in response to AI treatment lasting more than one year are not well 

characterised.  When this project commenced in 2010, limited information was available on the 

effect of AI treatment on MD for women with hormone sensitive BC [28] as well as women 

undertaking AI treatment for BC prevention (MAP.1 trial) [29].  Since 2010, nine additional 

studies investigated the effect of AI upon longitudinal MD. Notably, only two of these studies 

evaluated MD at 12 and 24 months of AI treatment [30, 31]; one other evaluated MD at 12, 24 

and 26 months [32]. The median time between measurements of volumetric density in another 

study was 32 months [33].  All others evaluated change in MD solely at approximately 12 

months of AI treatment.   

 

The Primary Aim for this thesis was to determine if participants in the IBIS-II breast cancer 

prevention trial randomised to anastrozole experienced measureable decreases in MD relative to 

trial controls. This may indicate that MD is a potential biomarker for the prevention of BC in 

high risk women.  Because MD changes for AI treatment longer than 12 months duration have 

not been well studied, the Primary Aim included characterisation of longitudinal changes in MD 

for treated vs control participants during all five years of trial treatment, as well as two years 

post-treatment. 

 

Mammographic density has been described as “the best–kept secret” in the medical community 

[34, 35]. One of the reasons for this is MD is difficult to measure repeatably and reliably.  
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Hence a secondary Aim for this project was to determine which of the available measurement 

techniques provided the most repeatable and reliable MD measurement of CMN IBIS-II 

participant mammograms.  The expected average decrease in MD due to AI treatment was small 

(1 to 2%) [29], hence the technique also needed to be capable of measuring potentially small 

longitudinal differences in MD.  

 

Mammographic density is associated with many other BC risk factors, such as age and body 

mass index (BMI).  These other BC risk factors, particularly age and BMI, confound the 

association between MD and BC risk.  They may also confound estimation of longitudinal 

change in MD, and need to be controlled for during statistical analysis. 

 

An additional secondary Aim of this project was to characterise the associations between 

baseline MD and other baseline BC risk factors in the population of CMN IBIS-II participants.  

This ascertained if the expected relationships between MD and BC risk factors were present for 

this population of high-risk women, in keeping with the MD literature. 

 

Prior to incorporating important covariates such as BC risk factors into longitudinal statistical 

models of change, a representative model for mean change over time is often developed [36].  

Subsequent to developing an ‘unconditional’ (without covariates) mean model of change, 

important covariates such as confounders are added to the model before the addition of 

covariates of interest such as treatment group.   

 

The IBIS-II trial is ongoing, and trial treatment status remains double-blind to everyone except 

the IBIS-II trial statistician.  Because treatment status could not be divulged, the final secondary 

Aim of this project was to develop a suitable model for MD longitudinal change, adjusted for 

important covariates, prior to incorporating treatment allocation into the model.  This was 



 Chapter 1 

8 

necessary in order to provide a suitable set of statistical models to the IBIS-II trial statistician, 

who then performed the unblinded analysis of treated vs control groups (thesis Primary Aim). 

 

This study (comparison of MD response to AI vs placebo in Calvary Mater Newcastle IBIS-II 

participants) is important because few MD studies have examined longitudinal MD and AI in 

(high risk) women in contrast with a high quality comparison group (i.e. similar women 

randomly allocated to a control group receiving no treatment).  Single arm trials of MD in 

women treated with AI are helpful, as are case-control and cohort studies, but these do not 

provide the superior data possible in an RCT. If early (1 year) decreases in MD are proven to be 

a biomarker which shows treatment with five years of AI is effective for these women (i.e. 

decreases in MD due to AI treatment are associated with decreases in BC incidence), this may 

save lives by encouraging high-risk women to take up preventive hormonal treatments.  

Similarly, it may encourage women to continue adjuvant endocrine therapy despite side-effects 

because the short-term discomfort will be worth the long-term benefit.   

 

 

1.1 Thesis AIM summary, CMN IBIS-II MD and AI substudy 
 

The Primary Aim of this thesis is to compare longitudinal MD change in IBIS-II participants 

randomised to treatment with anastrozole and placebo. Before the Primary Aim could be 

addressed, four Secondary Aims were completed: 

 

Secondary Aims: 

AIM 1: To review and select MD measurement techniques for this thesis  

AIM 2: To investigate intra- and inter-technique measurement reliability for MD 

AIM 3: To describe baseline characteristics of the participants included in the CMN MD and AI 

substudy and investigate associations between MD and baseline characteristics 
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AIM 4: To develop an adequate model for mean change in MD over time for the aggregate 

(treated + control) groups— a “blinded” longitudinal analysis 

 

Primary Aim (AIM 5):  

To assess differences in longitudinal MD for treated vs control participants during the five years 

of treatment during the IBIS-II trial, and for two years post-treatment— an “unblinded” 

longitudinal analysis 

 

1.2 Thesis Chapter Overview 
 

Chapter 1: Thesis introduction including Aims and Chapter Overview 

Chapter 2: Breast cancer background and MD literature review 

Chapter 3: Project methods (IBIS-II trial background, approvals, statistical method overview) 

Chapter 4: Review of techniques used to measure mammographic density 

Chapter 5: Intra- and inter-technique reliability analysis 

Chapter 6: Baseline characteristics and MD association analysis 

Chapter 7: Aggregate IBIS-II group (treated + control) longitudinal MD change analysis 

Chapter 8: Treated vs control (unblinded) MD longitudinal analysis 

Chapter 9: Discussion 

 

The next chapter examines MD within the broader context of breast cancer.  Breast 

development is briefly discussed, as well as BC treatments, staging, prognostic markers, and 

risk factors.  The relationship of MD with BC risk factors and therapies which affect MD are 

reviewed. 
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2. Breast Cancer, Risk Factors and Mammographic Density 

This chapter has six main sections.  The first three sections discuss the breast and breast cancer, 

to provide a context for the mammographic density review in latter sections.  The first section 

provides a brief description of breast development and breast density.  The second section 

includes a summary of breast cancer incidence and mortality (worldwide and within Australia), 

as well as a brief review of BC treatments, staging and prognosis.  The third section discusses 

the relationship of BC and established risk factors for BC.  The fourth section reviews the 

relationship of MD with BC risk factors.  The fifth section describes the changes which occur in 

MD during treatment with hormonal medications; this section contains a review of AI and BD 

studies (as of April 2018).   The sixth section contains a discussion of MD in the context of 

modelling BC risk.  The chapter concludes with a summary of the factors which are associated 

with MD.   

 

2.1 Introduction 
 

The breast is a complex organ.  Development in females begins in utero and ceases soon after 

birth until it resumes during puberty [37, 38].  The breast completes maturation during the last 

stages of pregnancy when type 4 (milk-producing) lobules become dominant [37].  During 

menopause the glandular (lobular) and inter-lobular fibrous tissues are replaced by fat 

(menopausal involution) [39].  The lower breast density observed for post-menopausal women 

compared to pre-menopausal women is due to breast tissue involution during menopause.   

 

2.1.1 Breast Density 
 

Structures such as bone or teeth appear white on x-rays and are called dense because they 

attenuate (absorb) x-rays more strongly than surrounding tissues.  Similarly, the dense breast 

tissues appear white on mammograms (x-rays of the breast) because they attenuate x-rays more 

than fat, Figure 2-1.  Fat is translucent to x-rays and appears dark on mammograms.  Both 



 Chapter 2 
 

11 

lobular epithelial (glandular) and connective breast tissues absorb more x-ray energy than 

adipose tissue and appear dense; however, it is primarily the inter-lobular fibrous connective 

(stromal) tissue which gives rise to the dense appearance of the non-lactating breast. 

  

 

Figure 2‐1 IBIS–II1 [26] digitised film‐
screen mammogram. 
 
About 50% of the breast area is 
covered by dense white ‘fluffy’ tissues = 
~50% percent density (PD).  Fat 
(adipose tissue) is translucent to x‐rays 
and appears dark on mammograms. 
The pectoral (chest) muscle can also be 
seen crossing the upper left corner of 
the mammogram (left medio‐lateral 
oblique (LMLO) view).   
 
1.) Outer edge of breast (skin) 
2.) Subcutaneous fat 
3.) Dense breast tissues 
4.) Cooper’s ligaments  
5.) Pectoral muscle 
 

 

 

2.2 Breast Cancer – background 
 

Breast cancer is the most common cause of mortality from cancer in Australian women, causing 

over 2,500 deaths per year [40].  Australian women have a one in nine chance of developing 

breast cancer within their lifetime [5].  The World Health Organisation (WHO) estimated over 

536,000 women in 2012 worldwide died from breast cancer, the second leading cause of death 

from cancer in women (1% of all global deaths) [2].  By 2030, the WHO predicts BC will be the 

leading cause of cancer death for women (over 800,000 deaths; 1.1% of all deaths).  Breast 

                                                            
1 IBIS‐II is an international prospective randomised controlled trial of an aromatase inhibitor 
(anastrozole) for the prevention of breast cancer in high‐risk women. This trial is further described in 
Chapter 3.   

1  

2

3

42

5 
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cancer can have wide ranging effects on most aspects of a woman’s life [41]; the emotional, 

familial, and economic impacts of breast cancer are profound [42, 43].   

 

Almost all (99%) of breast cancer occurs in females; ~1% occur in males [44].  Due to the much 

greater incidence of BC in females, this thesis only reviews breast cancer and breast density in 

females.   Breast density in males is not well described.   

 

Most BC arise from the ductal and lobular epithelial tissues of the breast.  Invasive ductal 

carcinoma is the most common BC (60-90%), followed by lobular tumours (~10%), unspecified 

(invasive) carcinomas (~5%) and other “special” subtypes (5 to 10%) [44].  BC types tend to 

vary with by age, reproductive history, family BC history, ethnicity and country of residence 

[44-49].   

 

Breast cancers undergo additional pathological classification for prognostic (survival) and 

therapeutic (treatment) purposes.  Staging, which measures cancer size and whether the cancer 

has spread to the lymph nodes and more distant sites (metastases), is important for prognosis 

and surgical treatment options. Smaller cancers which have not metastasised at the time of 

diagnosis have better prognosis than larger non-metastatic tumours.  BC survival rates are also 

affected by ethnicity, socio-economic status and other factors.  The presence or absence of BC 

histo-pathological markers (e.g. estrogen-receptor status) are also associated with survival rates, 

and guide treatment options.  Newer BC classification schemes such as molecular and genomic 

expression are being used to inform prognosis and treatment.   

 

2.2.1 Impediments to BC screening and treatment in low resource settings 
 

Breast cancer is the most frequent type of cancer for women, and the leading cause of cancer 

death for women worldwide [50].  Incidence is higher in developed vs developing regions of the 

world, but mortality rates are comparatively higher in developing areas.  BC mortality is higher 
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in less well–resourced countries because communicable diseases typically present more of a 

burden in these areas [49, 51]; treatment and prevention of non-communicable diseases 

including cancer is a lower priority.  Overall there are fewer resources to assist with healthcare 

needs in lower income countries, adding to the difficulties of treating cancer [52].  Breast 

cancer, along with gynaecological cancers, present particular problems to women in the male-

dominated societies which prevail in the developing world [53, 54]. Geographical issues (e.g. 

great distances) and lack of education add to the difficulties posed both by personal (at the level 

of the individual) and regional financial constraints [52, 54].  Hence many women in developing 

countries present with late stage (larger size, poor prognosis) BC compared to their counterparts 

in better resourced areas [49, 55].   

 

The combination of screening with the ever growing array of treatments in developed countries 

has led to BC mortality reductions for women living in these regions.  Adequate cancer 

screening and treatment requires funding for and coordination of a broad range of clinical 

disciplines [56].  Among the non-communicable diseases,  cancer presents a particular challenge 

in developing countries due to these requirements [57]. Screening programs are only effective in 

areas which have the appropriate infrastructure and medical facilities to adequately care for 

persons diagnosed with cancer.  Whilst the Breast Health Global Initiative recommend 

opportunistic screening with clinical breast examination in low resource settings [56], allocating 

scarce resources to widespread mammographic screening to detect small (early stage) BCs  is a 

low priority  in these settings if the women are subsequently unable to receive satisfactory 

treatment.  

 

2.2.2 BC incidence and mortality in low vs high resource settings, and 
Australia 
 

The World Health Organization’s (WHO) International Agency for Research on Cancer 



 Chapter 2 
 

14 

GLOBal CANcer (GLOBOCAN) project2 estimates that BC is the second leading cause of 

cancer death in women in developed countries (15.4%, second to lung cancer), and is the 

leading cause of cancer death of women in less developed countries (14.3%) [50].  The annual 

global absolute incidence (number new cases of BC) in 2012 was similar in developed (794,000 

women) vs less developed regions (883,000 women).  Although the absolute number of new BC 

cases in 2012 was similar between developed and less developed nations, 2012 BC incidence 

rates were much higher in developed (74.1/100,000) vs less developed regions (31.3/100,000).  

This is because life expectancy is higher in developed vs less developed regions and cancer 

incidence rates increases with age.   

 

Despite the approximately equal numbers of women diagnosed with BC in developed vs 

developing regions in 2012 (~850,000), the estimated absolute number of women who died in 

2012 from BC was much higher in developing regions.  The GLOBOCAN project estimated 

324,000 women in less developed regions succumbed to BC in 2012 versus 198,000 in 

developed regions [50].  When the number of BC deaths to the number of new BC cases 

diagnosed in 2012 are compared, the proportion of BC deaths to diagnoses in developing 

nations is approximately twice as high (324,000/883,000 = 41%) relative to developed nations 

(198,000/794,000 = 22%).   

 

The disparity between absolute BC incidence and absolute number of deaths is echoed when the 

2012 BC incidence rates and BC mortality rates are compared.  Although the 2012 BC 

incidence rate was more than twice as high in developed regions vs less well developed regions 

(74.1 vs 31.3/100,000), mortality rates are similar (14.9/100,000 (developed) vs 11.5/100,000 

(developing)).  The similarity in death rates despite the more than double incidence rate in 

developed regions is likely due to disparities in adequate health care access and availability of 

effective treatment.  

                                                            
2 http://globocan.iarc.fr, with interactive data visualisation tools at http://gco.iarc.fr/today/home  
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The GLOBOCAN estimates reveal that Australia and New Zealand women have one of the 

highest incidence rates in the world (85.8/100,000), second only to Northern Europe 

(89.4/100,000) [50].  Mortality rates in Australia are comparatively low (14.5/100,000) given 

the high incidence rate, which is probably a reflection of access to early detection and treatment.  

The Australian Institute of Health and Welfare (AIHW), using Australian-based age-

standardisation, calculated the incidence rate of BC as 115/100,000 in 2008 (13,567 women).   

 

 
Figure 2‐2 Low income country population structure (structure A) vs high income country (structure B)   
Cancer particularly is a disease which most commonly occurs in older people; most people in developing 
nations are unable to reach an age to succumb it or other conditions commonly associated with ageing. 
Differences in population structure must be accounted for during comparisons of disease and death 
rates across geographical regions and time, else comparisons will likely be misleading.  

 

Differences in population structure between the average global population (more younger 

people and fewer older people (pyramid shape, Figure 2-2, left) and the distribution of ages in 

Australia (more balanced among all age groups: cylindrical shape, Figure 2-2, right) accounts 

for the differences in the incidence between the GLOBOCAN and AIHW rates.  Because the 

Australian population structure differs from the global population structure, direct comparisons 

of rates (for any disease) for any age group are likely to be misleading [58].  Therefore different 

population structures are converted (standardised), typically to a common (global) reference 

population structure, to facilitate comparisons across different geographic regions as well as 

different points in time.   
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Relative survival compares the survival rates of people with a condition to similar people 

without the condition. It is important that the comparator group of unaffected individuals is 

similar, else the number calculated for relative survival will be inaccurate. Five-year relative 

survival for BC in Australia is estimated to be 89.4% [44].  Hence when all the women 

diagnosed with BC in Australia from 2006 to 2010 were compared to all the other women in 

Australia (matched by age and sex in the same calendar year, adjusted for remoteness area and 

SES), 89.4% of the women diagnosed with BC lived for 5 years compared to their unaffected 

counterparts.  This compares favourably with five-year relative survival in the US and Europe, 

and is higher than five-year relative survival in lower resource settings, e.g. ~71% five year 

survival rates in Thailand and Yunnan province in China [59].   

 
 
In developed countries, both the absolute number of women diagnosed per year with BC has 

increased, as well as the yearly rate (e.g. incidence per 100,000 women) [44, 60].  In Australia, 

5,310 women diagnosed with BC in 1982, 8,059 in 1992, 10,765  in 1998, and 13,567 in 2008.  

Age-standardised rates of BC in Australia per 100,000 women were 81.1, 100.8, 114.9 and 

115.4 for the same years.   

 

The remainder of this chapter primarily discusses breast cancer and breast density in developed 

regions.  Breast density is only detectable via medical imaging techniques such as 

mammography, ultrasound and magnetic resonance imaging (MRI).  Imaging facilities with 

these techniques are not wide-spread in lower resource countries; hence information on 

mammographic/breast density is not widely available.  However, research investigating the 

relationship between breast density and BC in developing regions has recently commenced, as 

well as an international consortium to pool MD research results from many countries [61]; the 

results from these projects are awaited with interest. 
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Figure 2‐3 Australian standardised incidence & mortality rates per 100,000 women, 1982 to 2013 
The pattern of increasing incidence rate, but decreasing mortality rate is typical for BC in most Western 
countries over the last 70 years.  Data sourced from the Australian Institute of Health and Welfare [62] 
 

 

2.2.3 BC Treatment  
 

Cancers amenable to surgical removal— e.g. small BC— are typically treated with surgery 

which can include lymph node removal if cancer has been detected in the nodes (nodal 

involvement).  Because BC is a solid tumour (as opposed to haematological (blood) cancers, 

which are dispersed throughout the fluid in the body), surgical removal of the tumour is 

considered the primary treatment.  Therapies which occur in addition to primary therapy 

(surgery) are called adjuvant therapies [63].  Adjuvant therapies include chemotherapy, 

radiation therapy (radiotherapy), hormonal therapy and targeted therapy.   

 

The term chemotherapy (the use of chemicals to treat disease) was first associated with cancer 

treatment from 1940 through the 1980s [3, 4].  Cancer chemotherapy has broad (multi-system) 

effects upon the body by disrupting the ability of both cancer and normal cells to grow and 
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divide; chemotherapy doses are based on the ability of the toxins to kill the cancer cells (which 

tend to grow more rapidly than normal tissues) before killing normal cells.   

 

Cancer “chemotherapy” is considered to be an entity distinct from “hormonal” therapies (e.g. 

estrogen, tamoxifen, aromatase inhibitors such as anastrozole) and “targeted” therapies such as 

herceptin.   In the context of breast cancer, hormonal (endocrine) therapy refers to treatments 

which affect the production or action of estrogen, progesterone or other sex hormones (naturally 

occurring chemicals in the body).  Unlike the broad effects of chemotherapy, hormonal therapy 

tends to only affect cells with receptors to the sex hormones.  Hormonal treatment for advanced 

(metastatic) BC in the 1960s included  treatment with estrogen, androgens and progestin [64]. 

Current treatments for hormone-sensitive BC include the serum estrogen modulators (SERMS) 

tamoxifen and raloxifene, as well as aromatase enzyme inhibitors such as anastrozole, 

exemestane and letrozole.  These modern hormonal therapies are further described in section 

2.3.3. 

 

2.2.4 BC Staging, Histopathological/Molecular/Genetic Markers and 
Prognosis 
 

Tumour size is an important staging, prognostic and therapeutic factor; smaller cancers are less 

likely to cause mortality [44], and can be treated with lumpectomy (breast conserving surgery) 

more readily than large tumours.  Invasive cancers which have grown out of their tissue of 

origin are much more problematic than carcinoma in-situ which remains within the originating 

tissue. Lymph nodes draining the breast tissues are pathologically examined for the presence of 

and size of BC during staging.  Other organs are also often imaged and/or sampled for the 

presence of BC (metastases).   

 

Cancers are also classified according to how much the cancer has changed the histological 

appearance of the cell (differentiation from normal cells),  the presence (+) or absence(-) of 
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estrogen  and progesterone receptors (ER/PR), and presence of human epidermal growth factor 

receptor 2 (HER2) receptors on the cancer cells [65].  Newer methods of classifying tumours 

use molecular and genetic markers [66], such as use of gene-expression profiling to classify BC 

into Luminal A, Luminal B, basal, and normal-type tumours [67].  The different classification 

systems provide groupings which often overlap, but help distinguish cancers based on these 

different (marker) characteristics.  The markers provide insight into prognosis as well as which 

treatment/s best suit the cancer.  In general, BC more closely resembling normal tissue (less 

differentiated) has a better prognosis than cancer which has increased mitotic activity, 

mitochondria, nuclei and microtubules (highly differentiated).   

 

Most (60 to 80%) invasive BC is ER+ and/or PR+ [68, 69]; the prevalence of ER+/PR+ BC 

depends upon the characteristics of the population studied including ethnicity, reproductive 

status and age [68-70].  ER+ and/or PR+ BC (i.e. ‘hormonal sensitive’ BC) is typically treated 

with anti-endocrine (hormonal) therapies to decrease the amount of estrogen available to 

promote the growth of the cancer; prognosis is favourable (90% 5-year survival for early stage 

(I-II) BC) [71].   

 

HER2+ cancer is typically very aggressive, and was highly fatal prior to discovery of targeted 

monoclonal antibody treatments.  Breast cancers without receptors for ER/PR/HER2 are known 

as triple negative cancers.  These poor prognosis cancers generally can only be treated with 

chemotherapy in addition to any surgical and/or radiotherapy options available.  

 

At diagnosis, a primary (first, original) cancer may be composed of identical cells, however 

most primary tumours are composed of a variety of cells with different mutations.  One type of 

mutation may dominate.  Due to the physiologic environment in different parts of the body, 

secondary (metastatic) cancers can differ from those of the primary tumour (clonal evolution).  

Treatment based upon markers within the primary tumour influences which cancer cells perish 
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during treatment, and which cells survive (within the primary tumour, and secondary tumours if 

present).   

 

The tumour markers expressed by primary and secondary tumours often change during cancer 

treatment, presumably due to evolutionary pressures exerted by the treatment and location of the 

tumour.  Change in markers indicates altered susceptibility to treatment. The ongoing ability of 

cancer to mutate makes this heterogenous disease extremely difficult to eradicate, especially if it 

has metastasised.  Our understanding of DNA transcription, how this is affected by 

environmental & developmental influences (epigenetics), and the complex interplay of 

molecules within each cell is growing, but very limited compared to the level of complexity 

within the body. 

 

Some women fare very well on the treatment selected for their BC stage and tumour markers; 

other women have similar cancers which do not respond to the same treatment.  Why this is so 

remains a complex and ongoing area of research [72]. 

 

In-depth ‘personalised’ (precision) medicine is still in its infancy, because of the complexity of 

each individual, as well as the complexity within the cancers themselves.   More evidence is 

coming to light that the tumour microenvironment (e.g. stromal tissue surrounding the cancer) 

plays an important role in tumour initiation and progression [73].  The biological, genetic and 

environmental factors which affect a woman’s response to BC treatment may be reflected in the 

amount of dense tissue in the breast before, during and after treatment.  Hence mammographic 

density may make an effective biomarker for BC prognosis, treatment selection, as well as the 

efficacy of particular treatment regimens.   
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2.3 Breast Cancer Risk Factors 
 

The average risk woman has a lifetime BC risk (to age 80) of 12.5%.  This equates to a 1 in 8 

lifetime risk of breast cancer.  BC risk increases with age; older women have a higher baseline 

risk than younger women [74].   Australian BC incidence was 8 per 100,000 women aged 30 to 

34; 230 per 100,000 women aged 50 to 54; and 298 per 100,000 women aged 70 to 74 [75].   

 

Breast cancer risk factors may be subdivided many ways, e.g. into strong vs weak vs protective 

factors, or those that can be changed (are modifiable) and those that are not [5].  An inherited 

BRCA mutation is an example of a strong BC risk factor that cannot be changed.  

Mammographic density is one of the few strong (≥3 fold) risk factors which can be modified. 

 

2.3.1 Non-modifiable risk factors for breast cancer 
 

The strongest risk factor for breast cancer is being female.  99% of BC occurs in women; only 

about 1% of BC develops in males [44].  Many of the risk factors for male BC are similar to that 

for female BC, but due to the low prevalence of male BC this disease is not widely studied. 

 

The BRCA1 and BRCA2 mutations are two of the strongest known risk factors for BC [5].  The 

lifetime risk of BC for a woman with a BRCA1 mutation is around 65 to 80% (20-fold risk 

increase compared to an average risk woman); lifetime BC risk for BRCA2 mutation carriers is 

about 50 to 60% [76].  The BRCA genes are involved in DNA repair, and also confer an 

increased lifetime risk for ovarian cancer (15 to 40%) [76] and other cancers.  Preventive 

strategies developed specifically BRCA-mutation carriers are being explored, e.g. RANKL 

(receptor activator of nuclear factor kappa-B ligand) blockade to inhibit mammary 

tumoriogenesis in atypical luminal progenitor cells present in BRCA1 mutation carriers [77]. 

 

Increasing age is also a strong BC risk factor.  The majority of BC (75%) occurs in women over 
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age 50 [44].  Treatment with radiation at young age to treat Hodgkin’s disease is also strongly 

associated with BC, as are previous history of the breast conditions DCIS (ductal carcinoma in-

situ), LCIS (lobular carcinoma in-situ), atypical hyperplasia and BC [5]. 

 

Weaker, non-modifiable BC risk factors include family history of breast cancer (e.g. BC history 

in first and/or second degree relatives), early age at menarche and thelarche, late age at 

menopause, high levels of circulating androgens, and (for post-menopausal women) high 

circulating levels of estrogens [5].  Exposure to ionising radiation at a young age, especially < 

20 years, a history of any other cancer, and tall stature (>1.8m) also increase BC risk [5] . 

 

2.3.2 Potentially modifiable risk factors for BC 
 

Affluent country of residence is strongly associated with BC risk.  A substantial proportion of 

this risk is associated with dietary and physical activity factors, but is also intimately 

intertwined with parity and breast feeding [78, 79].   

 

A review performed in 2002 estimated the rate of BC to age 70 in affluent countries would be 

halved from 6 to less than 3 per 100 women if women in developed countries gave birth to 6 

children which they each breastfed for 24 months like their counterparts in less developed 

countries [80].  Currently western women tend to have 2 to 3 children which they breastfeed for 

~8months.  The number of children per woman in developed countries is effectively not 

modifiable for a variety of social, economic and environmental reasons.  However, increasing 

breast feeding duration can potentially be addressed through improved education about the 

benefits of breastfeeding, and societal changes such as acceptance of breast feeding in public 

and facilities for breast feeding and/or expressing milk upon return to the workforce. 

 

The lowering of risk with increasing parity is closely associated with age at first birth.  Lower 

age (< 24 years) at first birth is associated with decreased risk of post-menopausal BC (relative 
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risk 0.5), compared to women who give birth for the first time at age 30 or older [81].  Parity 

generally confers a decrease in BC risk [5], however, women who first give birth at age 35 or 

older have a greater BC lifetime risk than nulliparous women [82].  BC risk is transiently 

elevated for up to 10 to 15 years after the first full-term pregnancy at any age [83].  Hence first 

giving birth at an older age coincides with increased BC risk due to age; these two effects 

appear to be additive.   

 

 
Figure 2‐4 Australian age‐specific rates of BC in 2008 
BC incidence increases with age.  The decrease incidence rate after ages 65 to 69 is due to a previous 
cease of invitations to screen after age 70. The age at which invitations to screen now cease has recently 
increased to age 74. Data sourced from the Australian Institute of Health and Welfare [62] 

 

The breast tissues proliferate during pregnancy in preparation for breast feeding, and the 

immune system is also suppressed [83, 84].  Involution of the breast tissues post-lactation may 

also be a pro-tumorigenic environment [83]. As per Figure 2-4, the absolute risk of BC per 

100,000 women is very low during the traditional childbearing years: less than 10 under age 30,  

fewer than 50 for ages 30-39 versus  more than 250  for women over 50 [44].  The transient 

increase in BC risk incurred during younger age at pregnancy is balanced by the very low BC 
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risk for younger women; the transient increase in BC is at younger age is also greatly offset by 

its later protective effects when BC risk is much higher (i.e. age 40+).  Older mothers (age 35+) 

experience the transient risk increase due to pregnancy; however, their risk does not drop again 

because their age-related risk is increasing. 

 

Pike theorised that overall BC risk is related to lifetime cumulative exposure to estrogen [85].  

This theory helps explain the elevated risk of BC seen in older age, when estrogen exposure is 

low.  Pike noted that whilst the log incidence rates for most cancers remain constant with 

increasing log age, the same is not true for breast cancer (Figure 2-5 part B, below). The linear 

relationship between the log of age and the log incidence rate for breast cancer becomes 

markedly less strong at about age 50, the approximate age of menopause.   

 

Figure 2‐5 (A) Pike model of mammary carcinogenesis. (B) Age‐specific incidence of breast cancer – 
observed and predicted by the Pike model  
The breast tissue exposure rate in the model (a) prior to the start of the peri‐menopausal period is very 
high compared to the rate of exposure in the peri‐menopausal and menopausal period.  When fitted to 
age‐specific log incidence rates in (b), the log incidence rate predicted from the model (curve) closely 
approximates the actual log age‐specific incidence rates observed in the female population (dots).   
FFTP First full term pregnancy;  LMP Last menstrual period. 
Sourced from Pike et al 1983 [85] via Boyd et al 2009 [86]  

 

Pike’s ‘breast tissue ageing’ model theorises that the amount of estrogen exposure at different 

times of life determines a woman’s cumulative risk of developing breast cancer (Figure 2-5, part 
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A).  The estrogen exposure rate in the peri-menopausal and menopausal periods is much less 

than rates of exposure in the pre-menopausal period; this could explain the marked decrease in 

the log incidence rate for breast cancer observed at menopause.  The curve from the predicted 

values of this model is well fitted to the observed age-specific breast cancer log incidence rates 

(Figure 2-5 part B).  Therefore, it is quite possible that exposure to estrogen throughout life is 

strongly related to breast cancer risk. 

 

The above model also helps to explain the population level associations of increasing breast 

cancer risk seen with earlier menarche, later age at first pregnancy/nulliparity, and late age of 

menopause.  For all of these conditions, exposure to higher levels of estrogens occurs for a 

longer part of the lifespan compared to women with later menarche, young age at first 

pregnancy and early menopause.  The model appears to be at odds with the transient increase in 

BC seen post-partum, but this is accounted for by adding an increase in estrogen exposure 

depicted by +b at the first full-time pregnancy (FFTP).  This factor is included in the model 

(line) that closely tracks the log age-specific BC rates (dots) seen in part B of the figure.   

The biological underpinnings of these effects may be due to susceptibility of the incompletely 

differentiated terminal ducts of the breast prior to first full term pregnancy.  The ducts contain a 

higher number of stem cells which are more susceptible to the carcinogenic effects of estrogen 

exposure [81, 83, 84, 87, 88].  Pregnancy and lactation are associated with fewer menstrual 

cycles and therefore fewer cycling hormones, which may also reduce BC risk.  Older first-time 

mothers would have more exposure to these carcinogenic factors, and hence would be more at 

risk post-pregnancy as well as from the additional pro-tumourigenic effects of breast involution 

[83].  

 

There are a number of dietary, physical activity and leisure activities associated with increased 

or decreased risk of BC.  It is estimated that up to 30% of BC risk could be eliminated with 

weight control and increased physical activity [89]. Higher body mass index (BMI: weight 

/height2) in pre-menopausal women (>30) is associated with a decreased risk of BC compared to 
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thin women (BMI < 21), whilst higher BMI is associated with increased BC risk in post-

menopausal women.  A number of mechanisms may be involved for these pre- vs post-meno-

pausal differences.  High BMI in pre-menopausal women may be associated with fewer ovula-

tory menstrual cycles and thus reduced estrogen levels/exposure to hormone cycles. Higher 

BMI is associated with more adipose (fat) tissue in the breast. For pre-menopausal women this 

may equate to more fat interspersed amongst the stromal (connective) tissues of the breast, 

changing the microenvironment of the breast.  The tissue may be less stiff, and/or the fat may 

change the signals produced by the surrounding connective tissues, which may reduce tumour-

igenesis.  In post-menopausal women the increase in breast adipose tissue is likely to cause an 

increase in local estrogen production by the aromatase enzyme.  Estrogen is a known carcino-

gen, and may be the source of increased BC risk for post-menopausal women with high BMI.   

 

Alcohol consumption is associated with a 7% increase in BC risk per standard drink per day vs. 

no alcohol consumption. Cigarettes appear to have a mixed effect upon BC risk; some studies 

show increased risk whilst others show a decreased risk.  Given that all of these studies are 

observational (i.e. are not RCTs), potential methodological confounding may be present.  One 

mechanism proposed for the supposed protective effect of cigarette smoking is suppression of 

estrogen production.  However, most studies find a dose-response effect with increasing 

exposure to cigarette smoke.  Cigarettes are strongly associated with a wide variety of other 

cancers and serious medical problems, therefore women wishing to lower their breast cancer 

risk are best to refrain from smoking.   

 

Exercise is protective against BC independent of its effect upon BMI.  Diet does not appear to 

have a strong effect upon BC risk, however a diet high in fruit and vegetables and low in fats is 

protective against many other cancers.  Phytoestrogens, found in foods such as soy products, 

and green tea have been explored as one of the reasons for lower rates of BC in Asian countries; 

conclusive evidence does not exist to support consumption of these foods for BC prevention.  



 Chapter 2 
 

27 

2.3.3 Hormonal therapies associated with prevention and treatment of BC 
 

Estrogen is a known tumour promoter.  Estrogen not only stimulates growth of ductal and other 

breast tissues during puberty and pregnancy, but also enhances the growth of many breast 

cancers. As described earlier, up to 80% of BC has receptors for estrogen and/or progesterone 

[90].  The survival of these ‘hormone sensitive’ cancers are often dependent upon a cascade of 

intracellular signals generated by activation of estrogen and/or progesterone receptors on the 

tumour cells.  A number of therapies which reduce the availability of estrogen to body tissues 

are associated with reductions in breast cancer risk.  The selective estrogen receptor modulators 

(SERMs) tamoxifen (TAM) and raloxifene (RLX) disrupt the ability of cellular estrogen 

receptors to bind estrogen [91].  The aromatase inhibitors (AI) exemestane, anastrozole and 

letrozole reduce estrogen by inactivating the aromatase enzyme which converts androgens to 

estrogens in the peripheral tissues of the body [92].  The ovaries are the primary source of 

estrogen in premenopausal women, hence SERMs are effective in both pre-menopausal and 

post-menopausal women due to the blockade of estrogen at the cellular level.  AI are only 

therapeutic in post-menopausal women whose primary source of estrogen is via the aromatase 

enzyme [23].   

 

SERMs and AI are used to treat BC [93], and are also effective for the prevention of BC [72, 

94, 95].  These therapies are typically given for five years; but recent data indicate longer 

therapy post BC (10 years or more) prevent recurrence of BC effectively without a great 

increase in other adverse events [96].  TAM in particular is associated with a very small but 

significant increase in endometrial cancers when given for BC prevention. RLX is slightly less 

effective than TAM in preventing BC but has a better side-effect profile: fewer endometrial 

cancers, thromboses (clots), and cataracts [97].  AI treatment has fewer serious (life-threatening) 

adverse effects but bone weakening (osteoporosis), fractures and arthralgia (joint pain) are com-

mon (>5% of women).  Generally, AI are preferred to TAM for treatment post-menopausal en-

docrine sensitive (ER+) BC because of higher efficacy and a favourable side-effect profile [98].   
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TAM does not cause an excess of endometrial cancer in pre-menopausal women treated with 

five years of TAM for early, hormone sensitive BC; the excess of endometrial cancer occurs 

primarily in post-menopausal women who appear to be the most greatly affected by the 

proliferative effects of TAM upon the lining of the uterus [22].  It is probable that use of TAM 

for BC prevention in young (<45 years) pre-menopausal women would not be associated with 

an excess of risk of endometrial cancer.  TAM has a carryover effect on BC prevention, which 

means that BC is suppressed for an additional five years after therapy ceases compared to 

controls in randomised controlled trials (RCTs) who received no treatment.  However, the 

excess risk of adverse events associated with TAM cease at the end of treatment.  This means 

the BC prevention effects from TAM persist for 5 years after treatment, but the possible side-

effects stop.  A possible BC prevention treatment strategy could therefore be TAM until 45 

years of age (five years before the average menopause at age 50) followed by preventive 

treatment with AI at menopause. 

 

Whilst used very widely for BC treatment of hormone-sensitive (ER+/PR+) BC, both AI and 

SERMs are rarely utilised for BC prevention in part due to concerns about possible side effects 

[99, 100].  Low levels of awareness in both general practitioners (GPs) and the general public 

are the major impediment however [101-103]; availability and cost, and difficulties in assessing 

BC risk have also limited the use of AIs and SERMs for BC prevention [104].  One substantial 

barrier to the use of TAM for BC prevention was lowered for Australian women in 2016:  the 

Australian Pharmaceutical Benefits Scheme (PBS) indications for TAM now include BC 

prevention for high risk women.  Australian women at high risk of BC can now be prescribed 

TAM to prevent BC by their doctors at a greatly reduced cost via the PBS.   

 

Evidence suggests that stronger side effects whilst on hormonal therapy are associated with 

higher efficacy of treatment (i.e. lower risk of BC) in many [105, 106] but not all clinical trials 
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[107, 108].  Low vitamin D levels (< 30ng/ml) were found in 88% of post-menopausal women 

with arthralgia and myalgia treated with third generation AIs [109, 110]. 

 

Many other BC preventive therapies have been proposed [95], including short-term use of 

human chorionic gonadotropin hormone released by the uterus during pregnancy in nulliparous 

women to induce the genomic signature in breast tissues acquired during pregnancy [111].  

However, no effective method exists to prevent the typically aggressive triple-negative subtype 

of BC; this remains an area of need to be addressed [94, 112-114].  A recent review indicated 

that longer length of breast feeding is associated with lower risk of developing triple negative 

BC, however, which may provide clues as to how to best prevent this particularly difficult group 

of cancers [78].  

 

2.4 Mammographic Density, BI-RADS and BC masking 
 

 

As described earlier in this chapter, mammographic density (MD) is comprised of the ductal 

(glandular) and stromal (epithelial) tissues of the breast and appear white on mammograms (x-

rays of the breast), whilst adipose tissue is transparent to x-rays and appears dark on 

mammograms, Figure 2-6.  Higher levels of MD are associated with higher levels of BC risk.  

 

Breast density has been recognised as a masking factor during mammography for at least 40 

years.  The American College of Radiology (ACR) Breast Imaging - Reporting and Data 

System (BI-RADS) was created to standardise radiologists’ reports when mammographic 

imaging became widespread in the 1970s and 1980s in the US.  A parameter for MD was 

included from the first edition of BI-RADS because it was recognised that dense breast tissue 

could hide cancers. The BI-RADS density parameter is comprised of four categories which have 

undergone several evolutions since they were first developed in the late 1980s [115].  John 

Wolfe’s initial articles in 1988 and 1989 disclosing BC as an independent BC risk factor were 
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controversial because many radiologists considered density solely as a factor that impeded 

cancer detection. 

 

The original BI-RADS (1992) density categories were purely descriptive (qualitative): 1) fat 

containing/almost entirely fat, 2) low density/scattered fibroglandular densities, 3) equal 

density/heterogeneously dense, and 4) high density/extremely dense [116].  These categories 

were intended to give the reader of the mammography report (who did not have mammograms 

available to view) the likelihood a cancer was masked by the dense tissues.  Most radiologists 

tended to assign 90% of mammograms into categories 2 and 3 using these descriptors [117] .  

This was in part because it is difficult to assign the categories systematically, repeatably and 

reliably using qualitative descriptions.   

< 25% dense  25‐49% dense 50‐74% dense 75%+ dense 

Figure 2‐6 Digitised film‐screen mammograms from participants in the ANZ Breast Cancer Trials Group’s  
IBIS‐II Breast Cancer Prevention Trial, categorised into the BI‐RADS (4th Edition, 2003) density categories 
The mammograms show varying levels of percent density (PD), defined as the percent area of the breast 
covered by radio‐opaque (white) dense epithelial and connective tissues.   

 

Numeric ranges for PD were first published in the 4th edition of BI-RADS (2003) in an attempt 

to standardise the BI-RADS density categories. These density categories use quartiles of PD to 

provide guidance for the assignment of each density category: (0 to 24%, 25 to 49%, 50 to 74% 

and 75%+) [118].  This was helpful epidemiologically because it provided a numeric 

(quantitative) estimation of the dense tissues on a mammogram.  However, the 4th edition 
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density categories did not fully address the primary BI-RADS clinical problem of BC masking 

by MD. 

 

The most recent version of BI-RADS (5th Edition, 2013) has returned to a qualitative description 

of the four density categories [119].  To lessen confusion between the BI-RADS density score 

(4th edition: 1 2 3 4) and the overall BI-RADS assessment categories (a numeric score of 1 to 6 

which is assigned by the radiologist to advise the likelihood of BC), the 5th edition version of 

BI-RADS assigns a letter (A B C D) to the four density categories.  Mammograms with little or 

no density are classified as category A (almost entirely fat).  Categories B, C and D reflect the 

increasing likelihood cancer is masked by dense tissue: B. scattered fibroglandular tissue, C. 

heterogenous fibroglandular tissue, D. extreme fibroglandular tissue.  Hence the quantitative 

(PD) BI-RADS density categories have been replaced by new qualitative categories that reflect 

the likelihood BC is masked on the mammogram.   

 

Although information on breast density was routinely included in the US radiology reports 

generated for clinicians, it was not routinely divulged to the women in their mammography 

outcome letter.  This has changed because of mandatory reporting legislation in a growing 

number of US states [120].  The reasons women were not informed of their MD include: 

concern about alarming women that mammography may not be able to fully detect BC; 

concerns about variability in the application of the BI-RADS density categories; and uncertainty 

how to best image breasts affected by the masking effects of MD.  Breast density is not 

routinely assessed or recorded at BreastScreen in Australia, nor is information on MD post-

mammography typically provided to Australian women or their general practitioners.   

 

The recent legislation has shifted the focus of MD in the US from a closely scrutinised risk 

factor within the research community to one of widespread concern to women and their 

clinicians.  Whilst the US MD legislation mandates that women are informed, guidelines as how 
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to best care for women with dense or highly dense breasts were few when legislation first 

commenced.  Both doctors and patients required succinct and accurate guidance, which the 

clinical and research community have endeavoured to provide [7, 121].   

 

Most MD research prior to enactment of the US legislation used standard epidemiological 

modelling techniques where the lowest level of risk is used as the comparison category.  

Women undertaking their own enquiries into how MD affects their BC risk will encounter these 

comparisons in the breast density literature.  However, providing clinical advice to women with 

high (50%+) or very high (75%+) levels of density that they are at 3 to 5 times the risk of BC 

compared to women with very low levels of MD is not compatible with other models of disease 

risk.   

 

Both women with highly dense breasts and those with very low density are unusual, and 

together comprise only about 20% of all women.  Most women have more than 10% dense 

tissue in their breasts [122], and use of women with very low PD as the reference category for 

BC risk due to MD is clinically problematic because these women are not at average risk due to 

their MD.  Use of moderate density (~25 to 49% dense) as the reference category to 

approximate the average lifetime risk of BC due to MD is clinically appropriate.  In keeping 

with this, the online guidance provided to clinicians by the California Breast Density 

Information Group advises that the ~10% of women with extremely dense breasts are at 

approximately double the risk of developing BC (~x2 relative risk (RR)) [123].  Very low levels 

of density (<10%) become protective: 0.8 RR compared to women of average density.   

 

MD is also difficult to quantify and describe.  The lack of a well validated, repeatable, reliable 

and easy to administer means to measure BD has been a core issue both clinically and 

epidemiologically. Reliable, easy measurement of BD is needed clinically to help women and 

their physicians make informed decisions.  Epidemiological studies have also been hampered by 
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the lack of precise tools to measure BD.  Studies tend to use different categories of density, the 

methods used to assess density often differ, and the techniques are typically subjective.  For 

example, the freedom to assign a BI-RADS density category lies with the radiologist, and 

application of the categories has been shown to vary amongst practitioners.  This adds 

complexity to the question of the additional risk posed by high MD, as well as which distinct 

characteristics of MD (i.e. patterns) are of greatest concern.    

 

Use of a simple 4-category system such as the BI-RADS density categories, or a single numeric 

estimation of density such as PD, may overlook additional risk information present in the 

pattern of density on the breast [124-127].  Not all patterns of density are the same.  Some 

density is sheet like, other density is wispy (scattered) and some resembles fluffy cotton balls.  

MD may be thickly clustered in a single quadrant of the breast, or evenly distributed over the 

whole breast area.   The well-established semi-automated research tool to assess PD, the 

Cumulus program, was named to reflect the cloud-like nature of MD with its varied patterns 

that resemble clouds in the sky.  The original density categories described by radiologist John 

Wolf attempted to describe and categorise these patterns.  However the Wolfe density patterns 

were very difficult to implement repeatably and reliably.  

 

Visual means of assessing mammographic density such as BI-RADS density [117] and semi-

quantitative methods such as the Cumulus program [86, 128] are being supplanted by faster, 

fully automated clinical software integrated with the mammography equipment such as 

Matakina’s Volpara [129] and Hologic’s Qantra [130, 131].  Continued improvements to the 

techniques to assess breast density should lead to ongoing improvements in the identification of 

women at high risk of BC and better clinical outcomes. 

 

 

Masking by MD is an important clinical issue. High levels of MD are associated with risk of 

interval BC (cancer diagnosed between screening mammograms).  Consumer-driven legislation 
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to inform women of their mammographic density has been passed in at least 30 USA states. 

Women who are informed that they have high MD may subsequently pursue alternative 

methods of imaging if desired.  However, it is still too early for the large screening trials 

currently underway to provide guidance regarding the best alternative imaging method/s (e.g. 

ultrasound, MRI) which best detect cancers in women with mammographically dense breasts 

[12-15].  Hence it is difficult to know which imaging modality or combination of modalities 

provides the most effective screening and diagnostic capabilities in women with dense breasts.   

 

Whilst the issue of how to best screen and diagnose breast cancer in women with 

mammographically dense breasts is a worldwide problem, as yet, no mandate exists in Australia 

or other countries outside the USA to advise women of their breast density after imaging.  This 

is in part due to the lack of a “gold standard” for density assessment. As yet there is no 

consensus on the best way to assess the amount of dense tissue in the breast.   

 

2.4.1 Mammographic Density, a proven ‘Independent’ BC Risk Factor  

 

Mammographic density was first described as an independent risk factor for breast cancer by 

Wolfe in 1976 [8].  Wolfe described four “parenchymal patterns”— N1, P1, P2, and DY— 

which correspond to increasing amounts of ductal patterns and ‘dysplastic’ (dense) tissues on a 

mammogram.  Wolfe’s research was controversial, because although about half the researchers 

who subsequently applied Wolfe’s parenchymal patterns to their data did support his findings 

that mammographic density was an independent risk factor for breast cancer, the rest did not 

find an association between increasing breast density and breast cancer risk [132].  This latter 

group claimed that high levels of breast cancer found in women with extensive density resulted 

merely from the masking of breast cancer by the dense tissue [9, 133]. 
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In the mid-1980s several researchers, including Norman Boyd, Audrey Saftlas and Pam 

Goodwin, applied epidemiological standards such as the Bradford Hill criteria to all twenty-two 

available studies of mammographic density [132, 134, 135].  Studies that were robust (i.e. met 

most epidemiological criteria) supported the hypothesis that mammographic density was an 

independent risk factor for breast cancer. Studies which were not supportive tended to lack 

methodological quality [132, 135].  Robust studies correlated intra- and inter-observer 

mammographic density assessments, avoided referral bias by selecting asymptomatic subjects 

as controls, and accounted for associations of mammographic density with other breast cancer 

risk factors such as age.  It also became apparent that one of the difficulties with mammographic 

density research was the highly subjective nature of Wolfe’s parenchymal patterns. 

 

A more recent meta-analysis of 42 mammographic density studies in 2006 found an association 

of around two to five times the risk of breast cancer for women with increasing levels of 

mammographic density compared to women with very little breast density (5 to 24%, 25 to 

49%, 50 to 74% and 75%+ PD  vs <5% PD) [136].  This analysis provided additional evidence 

of the ability of dense tissue to mask BC detection: prevalence studies had lower gradients of 

risk for breast cancer compared to incidence studies.  The higher rates of risk seen in incidence 

studies was due to the increased number of cancers found in the first year compared to later 

years due to masking by dense tissue.  Adjustment for this masking effect by excluding cancer 

detected in the first year of incidence studies yielded lower gradients of risk which 

approximated the risk gradients seen in prevalence studies.  As described in the previous 

section, models utilising average density for the comparison category yield a doubling of risk 

for women with very high levels of density vs average density (25 to 49% PD).   

 

MD is related to numerous BC risk factors, including age, body mass index and reproductive 

history.  These relationships are described in the next section (2.5 Mammographic Density and 

breast cancer risk factors). A paradox exists whereas MD decreases with age, whilst BC risk 
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increases with age.  Not all women experience the same decrease in MD as they age, and it is 

not yet known whether women who retain high MD, for instance, after childbearing and 

menopause are at increased risk compared to their counterparts whose high MD decreased 

during these reproductive events.   

 

MD is also one of the few strong BC risk factors that can be modified.  Therapies which 

increase estrogen levels in the body tend to increase MD; therapies which decrease estrogen 

levels in the body tend to decrease MD.  The mutability of MD may make it a useful biomarker 

of BC risk during hormonal therapy for the prevention and/or treatment of BC.  These 

relationships are discussed in Section 2.6 Drug therapies that affect mammographic density.  

 

2.5 Mammographic Density and breast cancer risk factors 
 

Many of the factors which affect BC risk also are associated with breast density.  In general, 

increased parity, longer duration of breast feeding and lower age at first birth are associated with 

lower PD.  Whilst BC risk increases with age, paradoxically PD tends to decrease with 

increasing age. Another BC risk factor, body mass index (BMI, kg/m2) is also strongly and 

inversely associated with lower PD.   

 
 
 

2.5.1 Increasing age is associated with decreasing MD 
 

Breast density is not normally distributed in women aged over forty and is age dependent [137, 

138].  Percent density in women of mammographic age (age 40+) tends to have a right skew 

(long right tail), as illustrated by the distribution of PD in baseline mammograms from a group 

of postmenopausal women who are at high risk of breast cancer (Figure 2-7, below).   
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Figure 2‐7 PD 
distribution, 
baseline 
mammograms from 
85 Calvary Mater 
Newcastle IBIS‐II 
participants 
 
Density was assessed 
using the Cumulus 
program.  The 
distribution has a 
right skew. All 
participants in the 
IBIS‐II breast cancer 
prevention trial are 
post‐menopausal 
and at high risk of BC 
(≥2 relative risk).   

 

The right skew for PD in older (e.g. post-menopausal) women is further illustrated in density 

distributions of women from a normal-risk population  (Figure 2-8, below).  These post-

menopausal women (aged ~50+) tend to have low levels of density [139].   

 

Mammographic density decreases with age [136, 137, 140-146]. PD typically reduces by about 

1% per year [147]; higher rates of decrease are generally observed in younger women compared 

to older women. For women free of breast cancer aged 40 to 44 in the Canadian National Breast 

Screening Study, median percent mammographic density was ~38% (Figure 2-9, below) [122]; 

this declined to an 18% for postmenopausal women aged 55 to 59.  The younger women not 

only had higher average percent density, but the distribution is broader and more symmetric (i.e. 

more normal) compared to stronger skew observed in their older counterparts.  Additionally, 

relatively few women of mammographic age (age 40+) have dense breasts (>50% density). 

Most women, even those in the age 40 to 44 group, have breast density less than 40% as shown 

in Figure 2-9: median density for each age group is indicated by the white band at the waist of 

each vertical bar; 40% PD is greater than the median for all age groups.  Extremely dense 

breasts (≥75% density) are even less common.  Like average percent density, the proportion of 
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women with highly (≥50%) and very highly (≥75%) dense breasts also decreases with age [137, 

138, 144, 148, 149].   

 

A 

 

 

B

 

 
 

C 

 

 

 
 
Figure 2‐8 Distributions of  A.) percent density; 
B.) dense area; C.)  non‐dense area, for 303 
post‐menopausal women with >0% PD 
 
The distributions of both percent density (A) 
and absolute dense area (B) are non‐normally 
distributed with a long right tail, whilst non‐
dense area (C) is more normally distributed. 
Sourced from Woolcott et al 2010 [139] 

 

 

Mammography is generally not performed in women under age 40.  Diagnostic accuracy is 

reduced by the dense breast tissues, and the breast cannot be suitably compressed to obtain good 

image quality at a low radiation dose.  The restrictions on performing mammography in younger 

women have prevented widespread epidemiological studies of MD in young women.  A few BD 

studies in young women have been performed using magnetic resonance imaging (MRI) [150-

159] and dual x-ray absorptiometry (DXA) [160-164].   
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Figure 2‐9 Distributions of percent mammographic density by age in 354 breast cancer free control 
subjects  
The distribution of percent density decreases with age.  A marked decrease is seen for women in the 

menopausal transition (age 50 to 54).  A small proportion of women have mammographic density over 

50%; this proportion decreases with age.  Very few women have very high percent density (over 75%), 

especially those who are post‐menopausal (age 50+).  Sourced from Boyd et all 2002 [137] 

 

Percent breast water in MRI is likely equivalent to percent mammographic density.  The fatty 

tissues of the breast contain little water and appear dark on MRI; these same tissues are also 

transparent to x-rays and do not contribute to density during mammography.  MRI breast water 

and mammographic density are strongly correlated (ICC 0.8) [152, 155].  Both MRI and DXA 

assessments of mammographic density are reproducible [152, 154].   

 

MRI, unlike mammography and DXA, does not utilise radiation and hence does not expose 

young women to additional radiation at a time when they may be most susceptible to it 

carcinogenic effects [165-168].  Use of MRI as a routine imaging technique has been limited 

due to high costs (thousands of dollars) per episode, but this hurdle grows smaller each year as 

costs decrease to hundreds instead of thousands of dollars per episode. Standard breast MRI 

requires use of a potentially harmful contrast agent to differentiate breast tissues; this renders 
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MRI unsuitable for general screening. Additionally, MRI is problematic for some individuals 

due to the need to lie very still as well as claustrophobic fears.  Effective methods of using non-

contrast MRI to assess breast density are being developed.  The DXA assessment technique is 

well tolerated.   

 

Due to the difficulty with assessing breast density in young women, little is known about the 

natural history of breast density in women under 40 years and how this relates to breast cancer 

risk.   A study in older women [147] has shown that women tend to remain in similar groups of 

percent density over time—  i.e. women in the upper quintile (upper 20%) of percent 

mammographic density tended to remain in the upper quintile over time.  Greater rates of 

decline in percent mammographic density have been found in older women with higher baseline 

mammographic density [144]; it is theorised that this may be true for younger women as well 

[169]. 

 

A (non-contrast) MRI study of young women and their mothers also supports the theory that 

greater declines in breast density are seen for women with higher initial levels of density [155].  

Figure 2-10 (below) shows the distributions of percent water for daughters aged 15 to18, for 

daughters aged 19 to 30 and in a subset of 100 of their mothers.  Median percent breast density 

as represented by MRI percent water decreases with increasing age in these groups.  Similarly, 

the inter quartile range (IQR), a measure of the variability in a population, declines with age.  

Several models of how breast density might change over time are shown in the left column of 

the figure. The MRI data best fits model C, where women with the highest percent density have 

the steepest decline in percent density as they age.  In this model, both median percent density 

and the IQR of the distribution decline with age, as observed in the Boyd MRI study.  

Therefore, it is likely that women who are in the upper quartile of percent density at a young age 

will remain in the upper quartile for density when they are older. 
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Figure 2‐10 Left column: Distributions of percent water in Daughters aged 15 to 18 years, Daughters 
19 to 30 years, and their Mothers.  Right column: Theoretical distributions of percent density with age   
Left: Median percent density (arrow) declines with age, as does the IQR (inter quartile range).   The 
youngest group of women have a nearly normal distribution of percent water; the distribution becomes 
more and more skewed to the right for women in older age groups.  The data from the left column most 
closely matches the theoretical distribution shown in (C) right column, where both median density and 
IQR decline with age.  Sourced from Boyd et al 2009 [155]. 

 

Interestingly, the distributions of MRI percent water in the figure change markedly with age.  

The distribution of percent water in daughters aged 15 to18 years of age is roughly normal, but 

the distribution of daughters aged 19 to 30 years becomes slightly skewed to the right.  The 100 

mothers’ MRI percent breast water distribution is much less normal, and has a pronounced skew 

to the right.  This latter distribution is similar to the strongly right skewed percent density 

distributions seen for mammograms of post-menopausal women (Figure 2-7, Figure 2-8, & 

Figure 2-9 ages 50+). The strong right skew is likely due to the cumulative effects of ageing, 

parity and breast feeding in the population of mothers.  After menopause, the distribution of 

percent water in mothers may become even more similar to that observed for percent 
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mammographic density in postmenopausal women, due to the rapid decline in mammographic 

density expected for most women during the menopausal transition.  The differences in MD 

distributions for younger and older women underscores the need to take age into account when 

assessing MD and breast cancer risk.   

As for MRI, DXA (dual-energy x-ray absorptiometry) has been used to show that daughters 

have higher % fibroglandular tissue in their breasts (median 69.4 % fibroglandular volume 

(FGV)) and the distribution is more symmetric than their mothers; the mothers have lower % 

density (median 35.8% FGV) with a right skewed distribution [161].  Higher BMI in adolescent 

girls is associated with larger breast size (area and volume), higher FGV and lower breast 

density [162, 170], whilst total body fat distribution is inversely associated with absolute FGV 

[164]. Increasing Tanner stage is positively associated with breast area, breast volume and FGV 

[162]. Breast density increases until Tanner Stage IV, but is lower at Tanner Stage V [162].  

Consumption of more sweetened milk-based drinks is associated with higher %FGV in 

adolescent girls, whilst higher yoghurt intake is associated with lower %FGV [171]. Adolescent 

saturated fat intake is positively associated with breast density (measured by MRI) in women 

aged in their 20’s, whilst lower mono- and polyunsaturated fat intake is inversely associated 

with breast density [172]. 

Greater use of non-contrast MRI and other techniques that do not involve ionising radiation 

such as ultrasound tomography may eventually lead to widespread characterisation of breast 

density in young women [173]. This may help the discovery of additional factors that cause 

breast density to decrease over time for most women, and what factors may cause some women 

to retain high levels of breast density despite the cumulative effects of age, menopause and child 

bearing. Since it is also theorised that exposure to estrogen and other potential oncogens at a 

young age are responsible for increased levels of breast cancer in later life, early detection of 

high mammographic density may make it possible to subsequently intervene more effectively in 

women at a younger age to better implement breast cancer risk reduction [169].   
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2.5.2 Weight and BMI are inversely associated with MD 
 

Mammographic density is often quantified using PD, which is the proportion of the total breast 

area covered by dense tissue. As a consequence, varying weight can greatly influence PD 

because breast size also varies [174, 175].  Body mass index (BMI)— weight in kilograms 

divided by the square of height in metres— has a strong, but inverse, association with PD in 

most [175-182] , but not all [183] studies. The amount of adipose tissue in the breast tends to 

increase as BMI increases (i.e. additional fat accumulation in the breast is seen with increasing 

BMI), but the area of the breast occupied by dense tissue typically does not show a concomitant 

increase [177, 184, 185].  Hence PD decreases because the absolute area of dense tissue does 

not increase with BMI. As a result, BC risk due to the percentage of tissue classified as dense in 

the breast may be underestimated if BMI is not taken into account [178].  

 

The observation that BC risk is decreased for obese women (BMI >30) before menopause, but 

increased for obese women after menopause may not be mediated through MD.  However, the 

amount of adipose tissue in the breast may complement MD as a biomarker for BC risk [186]. 

 

2.5.3 Parity and breast feeding tend to reduce MD 
 

Parous women tend to have lower breast density than non-parous women [138, 145, 149, 187-

194], although as discussed in a later section, age at first birth also has an effect upon both BC 

risk and MD.  Hence the lower life-time risk of BC associated with parity may be mediated 

through MD [195].  

 

Grove [196] first described the inverse relationship between the number of children (full-term 

pregnancies) and the proportion of P2 + DY (highly dense) Wolfe patterns.  Other researchers 

have found similar negative associations between Wolfe’s parenchymal patterns or PD with 

increasing parity [138, 146, 179, 180, 194, 197, 198].  PD assessed before and after first birth at 
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an average age of 33 in (primarily symptomatic) young women showed their average percent 

mammographic density decreased by 12% compared to 3% in non-parous age-matched controls 

over the three year average period between the first and second mammograms [199]. 

Approximately half the new mothers experienced a 10% or greater decrease in PD after birth 

(Figure 2-11, below).  The effect of each full term pregnancy also appears to be additive— each 

full term birth confers an additional decrease in mammographic density as well as lifetime 

reduction in BC risk.  

 

Similarly, length of time breast feeding provides not only a reduced risk of breast cancer, but is 

associated with a decrease in PD [179].  Thus it is possible that the long term decrease in breast 

cancer risk associated with each full term birth and subsequent breast feeding noted at the 

population level may be moderated through mammographic density.  BD may also be a 

biomarker at the level of the individual for reduction in BC risk: marked reductions (>10% PD) 

in BD after the first pregnancy and subsequent breast feeding may indicate a reduced risk of BC 

compared to women whose BD does not show marked reductions.   

 

As noted previously, the gradual decrease in mammographic density observed at the population 

level between puberty and menopause is likely influenced greatly by the effects of parity and 

breastfeeding most women experience during this time period.     

 

2.5.4  Menopause reduces average MD 
 

On average, mammographic density decreases by about 5 to 8% over the menopausal period; 

this period of life is associated with the greatest annual decrease in change of PD [137, 144, 

200].  As noted previously, the involution of the breast during menopause has similarities to the 

involution of the breast after cease of breast feeding.  The proportion of ductal and connective 

tissues (extracellular matrix, ECM) decreases, and the percentage of fat in the breasts increases.  
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Both involutions involve interactions of the stroma (connective tissues) with the ductal tissues, 

and produce inflammatory components linked to carcinogenesis.   

It is not yet known why some women do not experience breast involution during the 

menopausal transition as strongly as other women.  The breast cancer risk for women who 

retain more than 50% mammographic density after menopause is quite high (~3-fold RR); the 

risk is even more elevated (~6-fold) for post-menopausal women with more than 75% 

mammographic density compared to those with less than 10% density [136, 201].  The retention 

of high or very high MD post menopause may indicate the need for more frequent 

mammographic screening (e.g. annual attendance at BreastScreen) and/or use of additional 

imaging techniques (MRI, ultrasound) during the screening process.  These women may also be 

candidates to undertake treatment for BC prevention. 

 

2.5.5  Age at first birth, menarche and menopause 
 

Women who give birth at younger ages tend to have lower PD [138, 149, 190, 192, 193, 202].  

Late age at first birth is associated with increased breast density [149, 177, 194, 196, 203, 204], 

and the rate of age-related decrease in MD may be reduced  for first-time mothers older than age 

30 [145]. 

 

Later menarche is associated with higher breast density [194, 202], but this relationship is often 

attenuated when adjustment for other breast cancer risk factors is made [176, 203, 205, 206].  In 

contrast, late age at menarche is associated with a decrease in breast cancer risk, so the 

increased BC risk due associated with early menarche may not be modulated through BD.   

 

Later age at menopause is associated in some studies with increased mammographic density 

[147, 177]. Therefore, age at menopause may be related to breast cancer risk via mammographic 

density.  For a group of women over age 70, surgical menopause was positively related to PD 

(33% PD vs 25%PD for surgical vs natural menopause).  
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These relationships suggest, as per first live birth, that certain events significantly change MD, 

permanently, and the age at which they occur is very important for modifying MD.  It is not 

known 1.) if the change in MD induced by these reproductive events occurs only in select 

women; 2.) which breast cancer risk factors and/or genetic markers predict which women will 

respond to menopause, childbearing, etc. with measurable decreases in MD; and 3.) whether 

decreases in MD always correlate with decreases in BC risk at the level of the individual (as 

opposed to population-level BC risk).  It is also not yet known whether the amount of change 

induced by these reproductive events is proportional to reduction in BC risk, and how much 

change in MD is possible given the amount of MD which develops in the breast at puberty and 

is subsequently retained through the reproductive years.   

 

The mutability of MD and some of the possible effects of pregnancy on MD are illustrated in 

Figure 2-11 .  One (symptomatic) young woman showed a marked PD decrease after her first 

full-term pregnancy, from 65% to 10% (Figure 2-11 A, below).   Presumably this woman’s BC 

risk is now much lower than a similar woman whose MD remained high after her first 

pregnancy.  One other parous woman in this study had an MD increase of >15% after her first 

pregnancy.  Density was assessed by two independent readers using an interactive thresholding 

method (Madena), so this increase is unlikely to be a reading artefact.  Assuming that the 

woman had completed involution post lactation prior to her second mammogram, presumably 

this increase in density is due to an incomplete involution of the connective and glandular 

tissues which developed during pregnancy. It is possible that increases in MD (post-lactation) 

may be a biomarker for developing pregnancy-associated BC and/or later occurring BC.   

Perhaps women whose density increases after first birth also experience very little decrease in 

MD over the peri-menopausal and menopausal timeframes, which is associated with higher risk 

of BC.  Whether this plasticity in MD during reproductive events predicts the likelihood of short 

and long term changes in BC risk requires further investigation.  
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A B

Figure 2‐11 A) Before pregnancy and After pregnancy mammograms for a first time mother B) Percent 
density change in cases (1st time mothers) and non‐parous age‐matched controls 
Sourced from Loehberg et al 2010 [199] 

 

As per the Pike model of breast tissue ageing [85], delayed age of first birth and late age of 

menopause increases a woman’s exposure to hormonal and other factors which may 

subsequently keep the rate at which her breast tissue ages elevated compared to her similarly 

aged peers who gave birth earlier and have experienced menopause.  Pike’s model may help 

explain how increased age at first birth and menopause may increase mammographic density.  

Interestingly, though the Pike model predicts the protective effect of late menarche with breast 

cancer risk, the possible increase in mammographic density with late menarche opposes the 

Pike model.   

 

2.5.6 Taller women tend to have higher PD 
 

Tall women are at higher risk for breast cancer, and generally have increased percent 

mammographic density [174, 190, 192, 197].  It is possible that a shared mechanism (e.g. 

growth factors [207]) is responsible for this positive association between height and percent 

mammographic density with breast cancer risk.  Given that it is unlikely that widespread use of 

estrogen or other therapy to reduce adult height in young, healthy (adolescent) females will 

again be considered a viable treatment for ‘constitutional tall stature’ [208, 209], this BC risk 

factor is an unlikely target for reduction in BC risk.  However, utilisation of a woman’s height 

in risk assessment may help improve the tailoring of screening and BC risk prevention strategies 

for individual women.  
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2.5.7 Endogenous hormone levels 
 

An increase in BC risk for post-menopausal women is associated with higher levels of 

endogenous estradiol and testosterone; BC risk is lower in post-menopausal women who have 

higher levels of endogenous sex-hormone binding globulin (SHBG).  This latter molecule binds 

strongly to estradiol and testosterone, limiting their bioavailability [210].  The relationship 

between endogenous hormone levels and pre-menopausal breast cancer is not as well 

characterised [211, 212]. It is likely that the heritability of breast density (comprising dense 

area, adipose area, and PD) is a separate trait from the heritability of endogenous sex-hormone 

levels [210, 213]. 

 

Increased mammographic density has been observed for women in the top percentage levels for 

estrogen and other endogenous sex hormones such as testosterone in the blood [214-218]; 

however this relationship has not been observed in all studies [219-221].  For post-menopausal 

women in particular, the lack of association is not surprising given that serum levels of 

hormones may not reflect the hormone levels in the breast tissue [222, 223].  This is because 

most of estrogens and androgens produced by the cells of post-menopausal women are utilised 

by the same cells (intracrine action) [223, 224].  Very little, perhaps only 10%, of the product of 

this local synthesis is released into the circulatory system.  Therefore, plasma levels of 

endogenous estrogens and androgens are unlikely to reflect the levels of sex hormones present 

in the breast tissue of post-menopausal women.  The serum metabolites of androgens have been 

found to accurately reflect intracrine production of these hormones in women [223].  Similarly, 

the blood and urinary metabolites of estrogen also appear to reflect the levels of estrogen in 

post-menopausal breast tissue; these metabolites also have an association with mammographic 

density and breast cancer risk [225, 226].   

 

The serum levels of sex hormones in pre-menopausal women differ markedly from those of 

post-menopausal women because the ovaries in pre-menopausal women produce high levels of 
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estrogens which enter the circulatory system [224].  A slight association may exist for 

mammographic density and progesterone, sex hormone binding globulin (SHBG) and estrone in 

pre-menopausal women [216, 227].  

 

The association with serum and/or urinary sex hormones or their metabolites and 

mammographic density in pre- or post-menopausal is not yet fully characterised nor understood.  

If proven to be true, some of these associations may provide some insight into the biology 

underpinning mammographic density.  Better methods by which to measure sex hormones 

levels within the breast tissues may lead to better estimates of BC risk for women with high vs 

low levels of these hormones, as well as the interaction of these hormone levels and MD. 

 

2.5.8 Heredity 
 

Twin studies have shown that there is a highly heritable component to mammographic density; 

up to 60 or 70% of the variation in mammographic density can be explained by heredity [228-

232].  Genetic factors which influence mammographic density may also influence other breast 

cancer risk factors [198, 233].  Similarly, the relationship between mammographic density and 

breast cancer has been shown to vary by ethnicity in many [234-237] but not all [238, 239] 

studies.   

 

Since family history appears to play a large role in breast cancer risk [5], the heritable 

component of breast density is not unexpected, nor are the possible links with breast density and 

ethnicity.  Genome wide association studies (GWAS) have produced a number of new candidate 

genes for breast cancer [240, 241].  Some of the BC genes are associated with mammographic 

density [242, 243].  MD also has novel (different) genes associated with it which are not 

associated with BC.  Due to the large numbers of people required to obtain genetic associations 

using GWAS, it is likely that more BC candidate genes are associated with MD than is currently 
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apparent; the same could be true for the genes associated with MD which currently lack an 

association with BC.   

 

Interestingly, MD does not appear to differ between women with and without BRCA1 and 

BRCA2 mutations, i.e. MD is not higher in women with BRCA1/2 mutations compared to those 

without [244, 245].  However,  as for women without BRCA1/2 mutations, women with 

BRCA1 and BRCA2 mutations are also at increasing risk of BC as MD increases [193]. 

 

2.6 Drug therapies that affect mammographic density 
 

Treatment with therapies that increase hormone levels such as combination hormone therapy 

with estrogen and progesterone tend to increase mammographic density [215, 246]; in contrast, 

endocrine therapies that decrease the effects of estrogen such as tamoxifen tend to decrease 

mammographic density [247-251].   The exact mechanisms by which mammographic density is 

affected by these treatments is unknown; further investigation into these processes is needed.   

 

Because an association with BC and MD exists for these medications, they provide clues as to 

how breast density may be modified by hormonal changes.  This association also provides an 

opportunity to utilise changes in mammographic density as a biomarker for the breast cancer 

risk associated with these treatments.   

 

2.6.1 Hormonal contraceptive use 
 

The impact on MD from use of oral and other hormonal contraceptives is not well defined.  PD 

and dense breast area have been shown to both increase and decrease [190] with use of 

hormonal contraceptives, or remain unaffected [144, 186].  The effects may vary by 

ethnicity/race and country [252].  Premenopausal women unaffected by BC had a trend toward 

higher PD with OC use, but lower PD if diagnosed with BC [253].   
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2.6.2 Hormone replacement therapy and mammographic density 
 

Hormone replacement therapy (HRT) historically has been used to reduce the menopausal side-

effects such as hot flushes, and was thought to potentially reduce the risk of cardiovascular 

disease in post-menopausal populations [254, 255].  HRT is typically formulated with a 

combination of estrogen and progesterone, or with estrogen only for women without a uterus. 

Progesterone is added to estrogen in HRT to reduce the proliferative effects on the uterus caused 

by estrogen-only (unopposed) HRT.   

 

By 1980 investigations into the effects of HRT on MD had commenced [256].  Additional 

studies were undertaken in the 1990s as HRT became more commonplace [257, 258].  Most 

studies found a significant increase in the proportion of women with high MD for HRT users 

compared to non-users [259-264].  A visibly detectable change in mammographic density may 

take place as soon as 4 months after commencing HRT [258].  Kaufman [265] theorised that 

HRT appeared to interfere with the normal tissue involution of the breast post-menopause. 

 

Combination hormone therapy with estrogen and progesterone is significantly associated with 

increased mammographic density [215, 257, 266]. The WHI (Women’s Health Initiative) was a 

randomised controlled trial in which over 16,000 women were randomised to either 

combination hormone therapy or placebo.  Both a statistically significant increase in breast 

cancer risk and mammographic density were found in women treated with combination HRT 

[246].  After this discovery was published, hormone therapy use was reduced in the general 

population [267, 268].  This reduction in HRT use may have helped lower the worldwide 

incidence of breast cancer in post-menopausal women [269-271].  HRT has also been associated 

with an increase in PD as well as an increase in BC in other studies [253].   

 

Interestingly, in the WHI estrogen-only HRT randomised controlled trial of over 10,000 women 

without uteri, breast cancer risk was reduced in women randomised to the estrogen-only arm 
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even though mammographic density modestly increased during treatment [272].  The magnitude 

of the MD increase for estrogen-only HRT was smaller than the magnitude of the density 

increase for combination HRT.   

 

The WHI studies were not powered to further investigate whether the women who experienced 

strong (≥10%) mammographic density increases due to estrogen-only or combination hormone 

replacement therapy also experienced changes in breast cancer incidence. It is not known 

whether increased MD is a personal-level biomarker of increased breast cancer risk for the 

women who took combination HRT.   

 

Increases in MD may be a biomarker for decreased BC risk for estrogen-only HRT.  This 

paradox could result from estrogen’s antagonistic effects upon BC growth, such as observed 

historically in women with advanced hormone-sensitive BC treated with estrogen.  Changes in 

estrogen availability (both lower and higher) appear to negatively affect hormone sensitive BC 

growth. 

 

Another randomised controlled trial, the PEPI (Post-menopausal Estrogens/Progestins 

Interventions) trial, showed similar MD changes in response to HRT [273, 274].  Mean PD for 

controls decreased non-significantly by ~0.1% from baseline.  Adjusted percent density 

increased non-significantly by 1.2% for women randomised to estrogen-only HRT during the 

same period.  In contrast, adjusted percent density for women randomised to one of three types 

of combination HRT increased significantly by 3.1%, 4.6% and 4.8%.   

 

The response to treatment with HRT in the PEPI trial was variable.  Some women did not 

experience changes in density.  Density decreased up to 25% for some women, whilst density 

increased up to 38% for others.   
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It is probable like the WHI trial, the majority of the average increase in density was due to a 

subset of women who experienced strong changes in density whilst on HRT.   The PEPI trial 

also indicates (like an earlier case-control study of density and HRT, confounded by selection 

bias of cases [275]) that women with lower baseline percent density experienced larger 

increases in PD from HRT compared to women with higher levels of baseline density.   

 

As discussed earlier, endogenous levels of serum sex hormones are not strongly associated with 

mammographic density in post-menopausal women.   However, the increased levels of serum 

sex hormones from HRT are associated increases in mammographic density [266, 276-278].  

Additionally, increases in prolactin— a hormone which has many functions and is essential for 

breast development and lactation [279]— was associated with increases in MD for women 

participating in the PEPI trial. 

 

MD tends to decrease after cessation of HRT.  The typical risk factors for BC such as age, race, 

BMI and family history of BC are not associated difference in change in MD after cease of HRT 

[280].  Differences in genetic makeup, perhaps via hormone metabolism and growth factor 

pathways, are likely responsible for the variable response of MD to HRT [281].   

 

2.6.3 GnRH agonists and mammographic density 
 

Gonandotrophin releasing hormone agonists (GnRHAs) are potent suppressors of ovarian 

function [282].  GnRHAs are useful for contraceptive purposes, and are also widely used in 

assisted reproduction [251, 282].  GnRHAs are also efficacious in treating hormone-sensitive 

cancers in pre-menopausal women because they suppress ovarian function [283, 284]. GnRHA 

therapy induces a menopause-like state that, in conjunction with other endocrine treatments like 

tamoxifen or aromatase inhibitors, may improve survival in this group of breast cancer patients 

compared to tamoxifen only treatment [285-288].    
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A number of small mammographic density studies have been performed in premenopausal 

female subjects examining the potential of GnRHAs as a contraceptive and cancer prevention 

agent [251, 289-291].  Average mammographic density decreased whilst the patients received 

the GnRHA treatment. The density reductions as well as the contraceptive effects of the 

treatment completely reversed 12 months after therapy ceased.  Like the reversible changes in 

mammographic density experienced by women on HRT (and tamoxifen treatment, as described 

in the next section), these experiments show that GnRHA therapy also induces reversible 

changes in mammographic density, and that these changes might be modulated through the 

influence of estrogen.   

 

2.6.4 Tamoxifen and mammographic density 
 

As described earlier in this Chapter (section 2.3.3), tamoxifen is a SERM (serum estrogen 

receptor modulator), and has both estrogenic and non-estrogenic effects in different areas of the 

body.  Tamoxifen is an effective adjuvant endocrine therapy for hormone sensitive breast cancer 

because of its anti-estrogenic properties in breast tissue.  Tamoxifen has also been proven to 

reduce the incidence of breast cancer in healthy women at high risk of breast cancer [292, 293], 

but its side effect profile is such that the risks outweigh the benefits for breast cancer prevention 

in women at normal risk from breast cancer [294].   

 

A large of number of studies have investigated the effects of tamoxifen on mammographic 

density [295] .  In general, use of tamoxifen causes a reduction in mammographic density 

during the first 12 to 18 months of use [296]; these effects are reversible after therapy ceases.  

For some women, the change in mammographic density whilst on tamoxifen treatment is 

striking; up to 50% or more of the dense tissue in the breast disappears upon treatment with 

tamoxifen [250]. 

 



 Chapter 2 
 

55 

Closer examination of the preventive effects of tamoxifen in over 1000 high-risk IBIS-I 

participants revealed that women treated with tamoxifen who had a strong (≥10%) reduction in 

MD had a 63% reduced risk of breast cancer compared to controls [17] .  In contrast, women 

treated with tamoxifen who did not have a strong reduction in mammographic density (<10% 

change) had a breast cancer risk similar to that of IBIS-I controls who received placebo (no 

change in risk).  This study and others [30, 297, 298]  provide evidence that mammographic 

density may be a useful biomarker for treatment efficacy of breast cancer adjuvant endocrine 

therapies.   

 

2.6.5 Other SERMS and mammographic density 
 

Raloxifene is the most other studied SERM in relation to mammographic density, however a 

small amount of density research has also been published for the SERMs tibolone and 

bazodoxifene. A review published in 2010 on the effects of raloxifene found that its effects on 

mammographic density are inconclusive [299]; a more recent [2014] review found raloxifene 

decreased BD in two studies whilst a further seven found no effect [295].   A phase II trial is 

currently underway to discover if the fourth generation SERM alcolbifene is a suitable agent for 

the prevention of breast cancer.  Measurement of changes in mammographic density is one of 

the secondary endpoints for this trial [300]. 

 

2.6.6 Aromatase inhibitors and mammographic density 
 

As described earlier in this Chapter (Section 2.3.3), aromatase inhibitors (AI) inhibit the 

synthesis of estrogen by the enzyme aromatase [92].  AI are effective only in post-menopausal 

women whose main source of estrogen is from the activity of aromatase in peripheral adipose 

tissues.  Aromatase inhibitors are not effective in pre-menopausal women whose main source of 

endogenous estrogen is the ovaries.   

 

Two types of third-generation AI are commonly used for prevention and treatment of BC. Two 
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of the AI, letrozole and anastrozole, are non-steroidal, reversible inhibitors of aromatase; the 

other, exemestane, is a steroidal irreversible aromatase inhibitor.  These three AI are also known 

by their trade names: Femara (letrozole), Arimidex (anastrozole) and Aromasin (exemestane) 

[301].  The clinical trial MA.27 revealed that treatment with five years of exemestane or 

anastrozole for early breast cancer provided similar efficacy [302], i.e. the steroidal and non-

steroidal AI are similar in effectiveness.   There is good general consensus, as a result of many 

randomised controlled trials, that aromatase inhibitors are superior to tamoxifen for BC 

treatment in post-menopausal women [301].   

 

Though often unpleasant, menopausal-like side effects such as hot flashes, arthralgia and 

sweating from treatment with AI may indicate that the therapy is effective because these 

symptoms are associated with a reduction in breast cancer events [106].  Similarly, it is possible 

that strong changes in mammographic density upon treatment with AI is also a biomarker for 

treatment efficacy.  Together, MD change and treatment side effects may provide an even 

stronger biomarker for treatment effectiveness.   

 

At the time this project began in 2010, few (four) studies had examined the effect of aromatase 

inhibitors upon mammographic density.  Two of these studies examined the effect of AI in 

conjunction with HRT [303, 304], whilst the others examined letrozole in populations of HRT-

free women with and/or without BC [28, 29].  These latter studies indicated the 1 year change in 

PD associated with AI treatment would be small (–1% to –2%). As MD and AI are the content 

focus of this thesis, a more formal and up-to-date literature review was undertaken to investigate 

the effects of AI on MD (Section 2.7 Literature Review of AI and Breast Density ). 

 

2.6.7 Summary of endocrine therapies and mammographic density 
 

In general, endocrine therapies which increase levels of estrogen in the body such as HRT with 

estrogen or estrogen and progesterone also increase breast density.  An increase in breast cancer 
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risk was observed for women on combination HRT in the WHI trial.  

 

Concomitantly, endocrine therapies which reduce the levels of estrogen in the body such as 

tamoxifen and GnRHAs tend to decrease mammographic density.  In the IBIS-I randomised 

prevention trial, statistically significant, strong decreases in mammographic density were 

accompanied by a significant 63% decrease in cancer risk for women treated with tamoxifen.  

Some studies have shown small, yet significant decreases in MD during treatment with AI.  

Whether these decreases during AI therapy will be useful clinically to determine treatment 

efficacy is not yet known. 

 

2.7 Literature Review of AI and Breast Density (BD) 

2.7.1 Introduction 
 

The longitudinal effects of AI on MD/BD in post-menopausal women are not well 

characterised. A formal literature search was undertaken in April 2018 to investigate the effect 

of AI on BD in women with and without BC. The broader term ‘breast density’ (BD) was used 

to include potential AI studies utilising imaging methods besides mammography. Conduct of 

the review was guided by the PRISMA statement (Preferred Reporting Items for Systematic 

reviews and Meta-Analyses) [305], as well as the Cochrane Handbook (http://handbook-5-

1.cochrane.org/) and Cochrane Systematic Review training received in 2000 by the candidate 

whilst co-developing a protocol for a Cochrane Review [306] .  

 

2.7.2 Methods 
 

Any study which examined the effects of AI on MD and/or BD in post-menopausal women was 

eligible for this review, including reviews of these studies.  Searches were performed for 

PubMed, ClinicalTrials.gov, and the Cochrane Central Register of Controlled Trials through 23 

April 2018.  PubMed was searched in English using the following search strategy: ((breast OR 
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mammographic OR mammography) AND (density OR dense) AND (AI OR aromatase OR 

exemestane OR tamoxifen OR letrozole OR anastrozole)). The results were reviewed and 

extracted. The titles of all results were reviewed by a single reviewer (the candidate) and 

abstracts of articles read if deemed potentially relevant. ClinicalTrials.gov was searched for 

trials involving breast cancer and density; resulting titles and interventions were screened for 

(aromatase, letrozole, exemestane, anastrozole).  The Cochrane Central Register of Controlled 

Trials was searched using the terms (breast density or mammographic density and letrozole or 

exemestane or anastrozole); resulting articles published online from late 2014 onwards were 

reviewed (because these complemented the most recent (2016) full systematic review in this 

area [307]).  The grey literature and reference lists of extracted articles published (from all three 

databases) prior to late 2014 were not searched, as the prior full, multi-author formal systematic 

review [307] was expected to have uncovered any unpublished works. Articles containing 

reviews of AI and MD/BD were examined for additional studies.   Studies were summarised in 

tables including the type of treatment given, numbers of participants in each treatment arm, and 

‘absolute’ PD or BD change over time. A meta-analysis of RCTs of AI and MD [308], 

including an assessment of study bias and quality, would be undertaken if sufficient studies 

existed (i.e. 10 or more, Section 9.6.5.1 Cochrane Handbook (v5.1.0)). 

 

2.7.3 Results 
 

The search of PubMed yielded n=1479 articles titles for review; abstracts from 51 articles were 

appraised for suitability, yielding twelve AI and MD studies, one AI and (volumetric) BD study, 

and two systematic reviews.  The search of ClinicalTrials.gov yielded 631 studies whose titles 

and interventions were screened; 86 study descriptions were subsequently searched for breast or 

mammographic density as an outcome. Three further studies were found.  The search of the 

Cochrane Central Register of Controlled Trials generated n=2277 articles.  Article titles of the 

subset of 850 studies published online from late 2014 onwards were reviewed.  Twenty-five 

abstracts were read for relevance, but no studies not included in the PubMed or ClinicalTrials 
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database were found. One article [32] containing a review cited a further study published only 

as a conference abstract [309].  

 

A summary of these studies are presented in Table 2-1, Table 2-2 and Table 2-3. Table 2-1 

includes four PD single arm studies [30, 303, 310, 311], two PD case-control studies [304, 312], 

two PD cohort studies [18, 309] and five PD RCTs [28, 29, 31, 32, 313].  Table 2-2 lists a 

volumetric BD study [33], and Table 2-3 lists four publications which contain AI and BD 

reviews [32, 295, 307, 312] including two formal systematic reviews [295, 307]. Insufficient 

RCTs with evaluable results were found to warrant a meta-analysis (n=4).   

 

Three unpublished trials (not tabulated) were found on the ClinicalTrials.gov database: a single-

arm, multi-centre MD study of 140 women with BC treated with anastrozole or exemestane 

[314]; a single-arm, single centre study of ~400 women with BC treated with AI due for 

completion in 2018 [315]; and a multi-centre, case-control study due for completion in 2019 of 

~3000 comparing health controls to women with BC treated with AI [316]. 

 

Eight studies in Table 2-1 were undertaken in women with hormone sensitive (hormone+) early 

BC (1 single-arm study, 1 case-control study, 2 cohort studies, 4 RCTs) [18, 28, 29, 31, 32, 309, 

310, 312], and four were undertaken in high risk BC-free, non-HRT populations (2 single-arm 

studies, 1 case-control study, 1 RCT) [29, 30, 311, 313].  Most of these studies showed modest 

average reductions in MD (–1 to –3%) after one or two years of treatment with AI; it is notable 

some women (both AI treated and those on placebo) showed an increase in PD over time. One 

study published only as a conference abstract reported much higher visually estimated declines 

of ~6% with AI treatment, and ~8% with the combination therapy (AI + TAM) [309]. Two AI-

only studies reported an association for greater declines in PD for women with higher baseline 

PD [31, 312]. One study (comprised of 62% TAM only, 16% AI only and 22% TAM then AI 

treated women) reported a significant association between higher PD and greater baseline PD, 
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as well as a significant difference in recurrence-free survival for women with a MD reduction of 

–10% or more compared to women whose reduction was <–5% [18].  

 

Of the five randomised trials of AI and MD, two had active comparator groups (Henry et al [31] 

(2013), van Nes et al [32] (2014)) whilst three compared treatment with AI to placebo (Vachon 

et al [28] (2007), Cigler et al [313] (2010) and Cigler et al [29] (2011)).  The van Nes study 

which compared exemestane vs tamoxifen followed by exemestane did not report evaluable PD 

outcomes; the Boyd SCC (six category classification [128]) utilised to assess MD is not precise 

enough to evaluate the small (–1 to –2% changes) in MD resulting from AI treatment.  The 

other active comparator trial (Henry) of women treated with exemestane vs letrozole for 

hormone sensitive BC reported a ~2% decrease in PD in both groups at 2 years.  This does not 

differ from the expected 1% annual decline in PD in the general population. 

 

Of the three placebo controlled RCTs found, Vachon (2007) [28] reported effectively nil 

difference in (raw) average PD between control and treated groups at 1 year. PD adjusted by 

age, BMI, time on TAM, nodal status and number of tumours showed larger, but non-significant 

differences between groups:–1.0% (95% CI –2.7 to 0.7%) for letrozole and  –0.3% (95%CI –2.1 

to 1.4%) for placebo.  Adjusted annual longitudinal change was –0.68% (95%CI –1.3 to –

0.02%) for letrozole and –0.12% (95%CI –0.8 to 0.6%) for placebo (a non-significant 

comparison).  The two Cigler RCTs [29, 313] also report non-significant average PD 

differences at 12 months of treatment with letrozole (n=~30) or exemestane (n=~34) vs control.  

Although non-significant, differences in average PD of –1% to –2% for AI vs placebo were 

reported at different time points, with large SD and 95%CI compared to the observed mean 

change (e.g –1.7% PD (SD 5.7, 95%CI –3.9 to 0.4%) for n=30 women treated with 12 months 

of letrozole).  Because these studies each report similar but non-significant effects, this 

potentially indicates AI may reduce PD compared to no AI in a single trial with sufficient 

participants (e.g. 1000s of women).  The small difference of –1% to –2%, however, would be 
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difficult to measure clinically given the variability in most MD measurement techniques and the 

expected  –1%  annual decline  in PD due to aging.  

Table 2‐1 Raw (unadjusted) PD (%) change with AI treatment, by type of study 
Author  Population  Treatment and 

sample size 
PD (%) change (Δ) summary 

  Single Arm studies

Fabian et al 
2007 
[303] 

Increased risk BC‐ women 
receiving HRT and 6 
months letrozole (LET) 
 

LET + HRT (n=42)   PD decreased by 2% at 6 months 

Prowell et al 
2011 
[310] 

Prospective single‐arm 
cohort, hormone+ BC, 12 
months anastrozole 

Anastrozole (n=54)
 
 
 
 
 

Time 
point  Median PD 

Mean(µ) ΔPD 
baseline (ref) 

Baseline   13.4  ref. 
6 mo.    13.0     2 
12 mo. 10.3  ‐16 

 

       

Smith et al 
2012 
[311] 

Prospective single‐arm 
trial of high‐risk BC‐ 
women, 12 months 
letrozole 

Letrozole (n=20) 
 
 
 
 
 

Time 
point  Median PD 

Median ΔPD 
baseline (ref) 

Baseline  19.9  ref. 
6 mo.   19.2  ‐1.4 
12 mo.  16.2  ‐1.75 

 

   

Gatti‐Mays et al 
2016 
[30] 

High risk BC‐ women 
treated with exemestane 
(EXE) for 2 years 

Exemestane (n=35) 
 
 
 
 
 
 

Time 
point  Mean PD 

Median ΔPD 
baseline (ref 

Baseline   32.5  ref 
12 mo *  ‐2.4  ‐3.4 
24 mo *  ‐4.1  ‐2.8 

*PD difference from baseline 

  Case‐control studies     
Mousa et al 
2008 
[304] 

BC‐ women receiving low 
dose HRT with/without 
letrozole 

LET + HRT (n=28) 
HRT alone (n=28) 

Significant lowering of volumetric PD in LET 
treated women. Radiologist able to visually 
detect changes with median (volumetric) 
change of 27.9%, but unable to for median 
change <11.3%. 

Vachon et al 
2013 
[312] 

Women with early 
hormone+ BC from trials 
MA.27, N0631 or 
MC0532; matched to 
healthy screening 
controls 

 

AI (n=369) 
   Exemestane 52% 
   Anastrozole 48% 
Control (n=369) 

Time point  AI 
Mean PD 

No Tx 
Mean PD 

Baseline   17.8   16.2 
1.1 years * 
(median time) 

‐1.3  ‐1.1 

*PD difference from baseline 

  Cohort studies     
Kim et al 
2012 
[18] 

Retrospective cohort of 
women with TAM and/or 
AI treated hormone+ BC  

TAM → AI (n=233)
5 years AI (n=175) 

AI subgroup: ‐3.1% PD reduction after an 
average of 13 months. Women (TAM and AI 
treated) with reductions in MD ≥10% 
experienced significantly lower rates of 
recurrence compared to women whose % PD 
change was <–5%. 

Cuzick et al  
2006 
[309] 
reported in [32] 

128 of 1000 planned BC+ 
women from the UK 
enrolled in the ATAC 
(Anastrozole, TAM or 
combination) trial 
(nested cohort) 

Anastrozole (53)
TAM (46) 
Combination (46)  
Film MLO 
mammograms 

Overall (all groups) 5.8% reduction
Anas: 6% reduction 
TAM: 3.5% reduction 
Combination: 8% reduction 
No significant differences between groups 
Visual assessment by  radiologist 
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Author  Population  Treatment and 
sample size 

PD (%) change (Δ) summary 

  Randomised Trials 

Vachon et al 
2007 
[28] 

MA.17 RCT (5 years 
Letrozole vs placebo post 
5 years of TAM for 
hormone+ BC) 

Letrozole (n=56) 
Placebo (n=48) 
from 2 MA.17 
centres 

 

Time point  Letrozole  Placebo 

N PD N  PD 

Baseline  35  18.5  33  20.0 
12 mo. 35 16.9  33  19.0 
ΔPD 12mo. 35 0.8 33  ‐0.6 

    

Cigler et al 
2010 
[29] 

High risk BC‐ women 
(50%) and BC+ women 
(50%) with >25% PD 
randomised 2:1 to 12 
months of letrozole or 
placebo (MAP.1 trial) 

Letrozole (n=44) 
Placebo (n=23) 

Time 
point 

Letrozole  Placebo 

N  PD  N  PD 

Baseline  31   39.6  19   40.0 
12 mo.*  30  ‐1.74  19  ‐0.24 
24 mo.*  27  ‐0.01  16  ‐1.32 

*PD difference from baseline 

Cigler et al 
2011 
[313] 

High risk BC‐ women with 
PD ≥ Boyd SCC 2‐6, 
randomised to 12 months 
of exemestane or placebo 
(MAP.2 trial) 

Exemestane (n=49) 
Placebo (n=49) 

Time 
point 

Exemestane Placebo 

N  PD  N  PD 

Baseline 38 33.9 34   36.5 
6 mo. * 36 ‐1.33 33   0.22 
12 mo.*  34   0.56  31   0.58 
24 mo.*  24  ‐0.17  19  ‐2.93 

*PD difference from baseline 

Henry et al 
2013 
[31] 

ELPh trial of Exemestane 
vs Letrozole 
Pharmacogenomics for 
women with hormone+ 
BC; 2 years AI treatment 

Exemestane 
(n=120)  
Letrozole (n=139) 

Time 
point 

Exemestane  Letrozole 

PD   ΔPD  PD  ΔPD 

Baseline  16.1  ref  18.0  ref 
24 mo.*  14.3  ‐1.7  15.9  ‐2.1 

 

Time 
point 

Exemestane Letrozole 

DA  ΔDA  DA  ΔDA 

Baseline  2577  ref  2809  ref 
24 mo.*  2405  ‐172  2185  ‐187 

Dense Area (DA) in mm
2
 

van Nes et al 
2014 
[32] 

Women from the TEAM 
trial randomised to 5 
years EXE only or 
TAM→EXE for early 
hormone+ BC 

EXE only (n=197) 
TAM then EXE 
(n=181); per 
protocol analysis 

Three assessors utilised the Boyd SCC (PD 
categories:  0%, 1–10%, 11–24%, 25–49%, 
50–74% and  75%).  No difference was 
found between baseline, 1 year, 2 years and 
3 years of follow up.  Change in PD was not 
significantly associated with BC recurrence. 

 

A summary of the AI treatment results from a recently published volumetric MD and endocrine 

treatment study [33] is presented in Table 2-2. The study compared the rates of change in 

volumetric density between BC cases treated with tamoxifen or AI therapy and healthy controls 

from the general screening population.  Adjusted annualised change in volumetric percent 

mammographic density (VPD) for AI treated cases relative to controls was –0.30%/year for 

Volpara measured VPD and –0.58%/year for Quantra measured VPD (both significant, p<0.05, 

F-test).  Adjusted annualised change in VPD for cases and controls with baseline VPD <10%  

were not significantly different; however AI treated women with baseline VPD ≥10% 
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experienced significantly greater declines in adjusted annualised change in VPD compared to 

controls with baseline VPD ≥10% (p<0.05, F-test). 

 

Table 2‐2 Volumetric mammographic density change with AI treatment 
Author  Population  Treatment Volumetric MD change summary

  Case‐control study     

Engmann et al 
2017 
[33] 

Women with hormone+ 
BC receiving AI 
treatment; matched to 
healthy screening 
controls 

Anastrozole 
(n=403) 
Controls (n=1618) 

Measurement 
technique	

Adjusted annualised rate 
of change* for AI treated 
relative to controls	
VPD (%)  DV (mm

3
) 

Volpara  ‐0.30  <‐1 
Quantra  ‐0.58  ~‐3 

* Median time between mammograms was 
3 years for AI treated cases and 2 years for 
controls;  DV dense volume (mm3) 

   

 

Four studies containing reviews of BD and AI treatment, including two formal systematic 

reviews [295, 307], were found during the search for studies of AI and MD/BD (Table 2-3).  

The reviews indicate heterogeneity amongst the AI and MD/BD studies, with inconclusive 

results.  However, no further PD (MD) and AI studies have been published since the most 

recent formal systematic review [307] was undertaken, hence the candidate did not perform an 

additional, formal systematic review as little could be contributed to the literature. 

 

Table 2‐3 Systematic and other reviews of MD/BD and AI treatment 
Author  Summary description    Results 

  Articles containing non‐systematic reviews

Vachon et al 
2013 
[312] 

9 studies through 2013 are listed in Table 1 of a 
case‐control study matching women with early 
hormone‐sensitive BC from three trials 

Authors note the results of their study (no 
effect of AI on MD) are consistent with 5 of 
the 9 other studies, however 4 studies did 
find significant effects.  The 9 studies are 
heterogenous.  
 

van Nes et al 
2014 
[32] 

8 studies of AI and/or TAM through 2014 are 
listed in Table II of a randomised controlled trial 
(TEAM trial) article which measured MD using 
the Boyd SCC  
 

Authors report the TEAM trial results of la 
small or no effect of AI on MD consistent 
with other AI studies. 

  Systematic reviews   

Lienart et al 
2014 
[295] 

Qualitative systematic review of AI, TAM and
raloxifene’s (RLX) effects on BD. Seven AI studies 
were assessed (n=416 participants). 
 

TAM reduces BD, however the effects of RLX 
and AI are unclear due to conflicting results 
among studies 

Ekpo et al 
2016 
[307] 

Systematic review of AI and BD (n=10 studies), 
as well as studies reporting the association 
between BD and SERMs (n=26 studies) and 
physical activity or diet (n=55 studies).   

TAM reduces BD, however the effects of 
RLX, tibolone and AI on BD are unclear.   
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2.7.4 Discussion 
 

Most studies showed small average (<–2%) and non-significant PD changes per annum in 

response to treatment with AI.  This small change is difficult to detect in individual women due 

to the variability in the commonly used (semi-automated) PD measurement techniques, but may 

be possible to discern with the more modern fully automatic (volumetric BD) methods available 

[317].   

 
The limitations of this study include lack of a complete (thorough) systematic review of the 

literature, including the grey literature, conference proceedings and abstracts, and contact with 

the authors of existing publications to enquire about other possible unpublished studies. The 

review was undertaken in English only, potentially limiting the studies available for review, 

given that MD research is rising in popularity outside of the USA, Europe and Australia.  The 

studies were not assessed for quality, beyond separation into study type (e.g. single arm vs case-

control vs cohort vs RCTs), partly because too few studies existed to perform a meta-analysis.  

 

Evidence of a potential publication bias exists, as two planned MD studies found during the 

literature search have not been completed and published [309, 314]: one is presented only in 

abstract form (from 2006 [309]), whilst the other is listed as completed in 2009 on 

ClinicalTrials.gov [314], but no publications are listed on the trial listing and a web search using 

the trial unique identifier did not find any publications.  Further planned and/or partially 

completed AI and MD and/or BD studies may be found if searches of relevant sources are 

undertaken, e.g. conference proceedings such as: SABCS (San Antonio Breast Cancer 

Symposium), Why Study MD (Australia), the San Francisco Breast Densiometry Workshops), 

or searches of other trial registries. 

 

More research is needed to clarify the relationship between AI and BD.  It is still unclear if 

change in PD and/or volumetric BD are significantly associated with AI treatment compared to 

no treatment, or if the three commonly prescribed AI treatments differ from each other in their 
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effects upon BD (although the latter seems unlikely). The relationship between AI and BD is 

important to know at the population level to determine if the mammograms acquired during 

routine care can be used to acquire information on treatment efficacy.  It is also important for 

risk prediction and treatment efficacy assessment for individual women undertaking AI therapy 

for BC treatment and/or prevention.   

 

Clearly what is also needed, however, is a precise method with which to measure longitudinal 

MD and/or volumetric BD for this to have clinical relevance given the treatment effect vs  

measurement variability is high; this is especially true for measuring BD during AI treatment 

because these effects tend to be |≤10%| for individual women [28, 311]. Although three studies 

involving TAM treatment have shown significant improvements in BC-free survival are 

associated with strong reductions in PD (<–10% +) [17, 18, 297], no AI-only study has 

successfully measured change in MD/BD in association with BC survival/recurrence to assess: 

1) if an association exists; and 2) if this association differs for example by baseline PD, age, 

and/or the strength of the measured change from baseline.  Furthermore, it is unclear why some 

women on AI (or other endocrine therapy & HRT) experience increases in PD on treatment, 

whilst others remain the same or decline.  The difference in MD response to hormonal treatment 

is likely attributable to genetic (and possibly environmental) difference between women; 

additional research is also required to help clarify why women’s responses differ to hormonal 

therapies. Similarly, the physiologic and metabolic pathways by which AI (& other hormone 

therapies) affect MD are not known; elucidation of these may explain some of the reasons why 

certain women respond to AI more strongly than others, as well as shed light on treatments 

which may help improve AI/endocrine treatment response in non-responders. 

 

2.8 Other associations with mammographic density 
 

The associations between MD and other factors is broad and varied.  These factors include 

breast cancer tumour pathology, BC mortality, compressibility and firmness of the breast, 
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physical activity and diet.   

 

Although some studies have found positive associations between ER+ tumours and highly dense 

breasts [318-320], a recent meta-analysis showed little association between ER tumour status 

and MD [321].  Luminal A and/or luminal B type cancers may develop more often in highly 

dense breasts [322, 323].  Racial differences for breast cancer subtypes vs MD may also exist 

[324], suggesting the presence of further links between race, heredity and mammographic 

density.  Further research is needed to ascertain if breast density is related to particular subtypes 

of breast cancer.   

 

Although high MD is associated with larger tumour size at diagnosis (i.e. worse prognosis), 

high MD is not associated with overall  increased risk of death from BC [325].   After 

adjustment for tumour size and the typical MD modifiers age, BMI and HRT use, interval (non-

screen detected) cancers in women with low density breasts (<25%) had significantly worse 5 

year survival than women with higher density (≥25%).  Low or very low (<10%) MD may be a 

prognostic factor for poorer survival compared to higher MD [326]. 

 

However, women with high MD who do not undergo radiation therapy may be at higher risk of 

both BC recurrence and death [327, 328]. This association is mitigated by radiotherapy: women 

with high MD who receive radiotherapy treatment for BC have improved survival rates [328].   

Mammographic density does not appear to be associated with breast size, compressibility upon 

mammography, nor thickness of the breast after compression [329].  Physical activity does not 

appear to change absolute breast dense area greatly [181].  Because BMI is strongly and 

inversely associated with PD— and BMI tends to be inversely associated with physical 

activity— relationships exist between physical activity and mammographic density [330, 331].  

However, the likely protective effects of exercise against breast cancer do not appear to be 

modulated through mammographic density [139, 331].   
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Diet has an effect upon cancer, and may also have associations with breast density [179, 307, 

332, 333], though levels of serum and dietary cholesterol do not appear to have an association 

with mammographic density [334].  It is not known why women residing in Asian countries 

such as Japan and China have highly dense breasts but low rates of BC compared to their 

Western counterparts.   

 

2.9  Mammographic density and BC risk modelling 
 

MD is a very common BC risk factor— breast density is classified as high to very high in a 

significant proportion of women.  Approximately 30% of premenopausal women over age 40 

and ~13% of post-menopausal women in a meta-analysis of MD studies had highly dense 

breasts [136].  About 43% of the US screening population has dense to very dense breasts; this 

equates to over 25 million women [335].  Women aged 40 to 49 years account for 

approximately 45% of the US women with dense breasts.  

 

Other moderate (1.5 to 2.5 fold) risk factors are also common (late age at first birth, nulliparity, 

fewer months of breast feeding).  The interactions between MD and other BC risk factors are 

not fully known [243, 336-342].  It is not clear whether certain women with high MD and 

specific combinations of common BC risk factors are at higher risk due their MD compared to 

other women with high MD who have a different combination of BC risk factors.   

 

Area under the curve (AUC, the ‘c-statistic’) is a method used to assess how well a predictor, or 

set of predictors, is able to forecast an event (outcome) will occur.  An AUC of 50% (0.5) 

indicates a predictor is no better than chance at forecasting the outcome.  An AUC of 100% 

(1.0) demonstrates the predictor/s are able to accurately predict an outcome will occur 100% of 

the time. Some routinely used clinical prediction models have modest (AUC 0.6 to 0.8) ability 

to discriminate between those who will develop an outcome and those who will not [343].  
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Modelled on its own as a risk predictor, MD has an AUC of ~0.55 to 0.6 to predict the risk of 

developing BC [16, 344, 345].   

 

Popular clinical models used to predict BC risk for the general (average lifetime risk) 

population include the Gail, Tyrer-Cuzick and Claus models [346-349], though many others 

exist [350, 351].  These models incorporate many of the risk factors associated with BC such as 

age, age at first birth, age menstruation commenced, personal history of breast biopsy and 

benign breast disease, and family history of breast and ovarian cancer.  One of the limitations of 

the Gail and Claus models is that they do not take into account family history from both sides of 

the family (mother’s and father’s sides of the family). The Tyrer-Cuzick model does include 

both parents’ family histories, but is more complicated therefore to implement.  For women at 

high risk— i.e. women with familial BRCA mutations or strong family history of breast and 

ovarian cancers— other more specific models tailored to estimate risk in these populations are 

utilised clinically such as the Breast and Ovarian Analysis of Disease Incidence and Carrier 

Estimation Algorithm (BOADICEA) [352, 353].   

 

The addition of MD to existing risk models yields only modest to moderate (AUC +0.01 to 

+0.1) gains to BC prediction at the population level [16, 89, 344, 351, 354, 355].   Area of dense 

tissue has also been investigated for its utility to improve risk modelling.  A ‘density residual’ 

(percent dense area, adjusted by age and BMI) was added to the Tyrer-Cuzick model to yield a 

substantial improvement in risk estimation for a population of high risk women (AUC improved 

from 0.51 to 0.62) [356].  However, when a similar density residual was added to the Tyrer-

Cuzick and Gail models to estimate risk in a general screening population, more modest 

improvements in AUC were found for both models (+0.04 AUC improvement, yielding an AUC 

of 0.61 (T-C) and 0.59 (Gail)) [345].   

 

The more modest improvement in risk estimation between the population may be a case of 
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‘overfitting’ the density residual parameter to the modelled population, or it could represent a 

difference in risk phenotype between a general screening population and a high-risk cohort of 

women.  Women at high risk due to family history tend to have higher MD than the general 

population.  MD variability may translate to a higher difference in risk for high-risk women 

than for those in the general population.  Further testing of the density residual’s effectiveness 

in predicting BC in high-risk populations, e.g. the National Surgical Adjuvant Breast and Bowel 

Project (NSABP) Prevention-1 (P-1) cohort of high risk women, as well as other screening 

populations is warranted.   

 

The BCSC (Breast Cancer Surveillance Consortium) risk model was developed using common 

BC risk factors including BI-RADS density [343].  The BCSC model yielded an age-adjusted 

AUC of ~0.62 in the general screening population, similar to the AUCs for the Tyrer-Cuzick 

model with the density residual. The addition of genetic markers (76 single nucleotide 

polymorphisms (SNPs), increased the AUC for the BCSC model from 0.66 to 0.69. The BCSC 

model was developed for the geographically and ethnically diverse USA population; further 

testing of the model in populations within and outside the US is warranted. 

Because MD is related to many other risk factors such as BC family history and age, the 

additional contribution to risk beyond the factors used in the models is small even though MD is 

a strong BC risk factor.  As described by Howell et al [89], due to correlations amongst most 

BC risk factors, additional markers are likely to only modestly improve models which already 

contain other risk factors.   

 

For a single risk factor to be useful for screening, very large relative risks (>100x)— preferably 

with different population variances (variability) between those with the risk factor and those 

without— are needed to distinguish between low and high risk [343, 357].  Even a strong risk 

factor with a RR of 3 (with similar variances for the groups with and without the risk factor) 

provides limited separation of the populations (Figure 2-12, below).   
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This limited separation of the curves for MD (RR~3) is one of the reasons that AUC generally 

show limited improvement with the addition of MD to risk models.  Theoretically however, a 

model containing enough risk factors will provide sufficient information to distinguish women 

who will develop BC during their lifetime, even if many of these risk factors might individually 

contribute only a small amount to the ability of the model to differentiate risk. 

 

 

Figure 2‐12 Odds Ratio distributions for 
extreme and typical strong risk factors 
Sourced from Wald et al 1999 [357] 
 
Upper graph: Maternal serum α fetoprotein 
(multiples of the median) has a large relative 
odds (ROQ1‐5) of 246 and different population 
variances between babies which have spina 
bifida and those that do not.  The value 2 
correctly identifies 91% of babies with spina 
bifida, whilst allowing for a 5% false‐positive 
rate (incorrectly identifying 5% of babies who 
do not have spina bifida). 
 
Lower graph: Typical probability curves for a 
normally distributed risk factor with equal 
variances which has a relative odds (ROQ1‐5) of 
~3 between the groups with and without the 
risk factor.  These curves illustrate how only 
15% of the group with ischaemic heart disease 
are correctly identified by a serum cholesterol 
level of 8 mmol/l or greater, which also 
incorrectly identifies 5% of men without 
ischaemic heart disease (5% false positive rate). 
 
Abbreviations: ROQ1‐5 Relative odds (odds ratio) 
of risk between the lowest 20% of the 
population (Q1) and the highest 20% of the 
population (Q5) 

 

PD may be an over-simplification of the risk information within the mammographic image.    

The different patterns of density and other features on breast images may provide additional 

features to discriminate between higher and lower risk women [124, 158, 358-360]. 

Whether MD presents the same biomarker for BC risk in all women is not known [336], partly 

because all BC risk models have a limited capacity to predict cancer at the level of the 

individual [89, 361].  This may be in part due to the inherent limitations of modelling.   
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Epidemiological studies can only examine a certain number of risk factors (e.g. smoking, BMI, 

alcohol intake) at any one time due to sample size and power considerations, as well as time and 

financial constraints.  BC is a common cancer, but is still a rare event at the population level: 

nearly 90% of women will not develop BC within the ‘lifetime’ risk of 80 years.  Very large 

numbers of women (thousands) are required to study BC incidence within a population, as 

exemplified by the need to recruit thousands of high-risk women for the IBIS-I and IBIS-II 

breast cancer prevention trials.  These large sample sizes are required to include multitudes of 

risk factors in these studies and still achieve reasonable statistical power, the ability to distin-

guish differences between groups with different combinations of risk factors, treatments, etc.   

 

However, many of the current limitations in BC risk prediction likely result from yet 

undiscovered risk factors and biomarkers for these risks.  Newer research techniques are 

continually being created to further investigate biological markers and other factors which may 

affect cancer risk.  The incredible complexity of the body and the unobserved interaction of the 

proteins, genetic material and other chemicals within an organism makes modelling these inter-

relationships extremely difficult (even if all were known).  As described above, the more 

elements which are included in a model the larger the sample size (e.g. number of women) 

needs to be to be able to distinguish among groups, making epidemiological studies all the more 

difficult. The large research consortia required to search for genetic identifiers (e.g. SNPs) using 

genome-wide association study (GWAS) techniques are another example of this [362, 363]. 

 

Additionally, use of alternative methods of deriving the strengths of risk factors during 

modelling — such as OPERA (odds per adjusted standard deviation), a way of describing the 

“absolute change in risk per standard deviation of its residuals after adjusting for” other 

parameters in a model [364]— may help to better quantitate the contribution of each risk factor 

and increase the ability of models to predict both individual and population risk  
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Generally speaking, the ‘low hanging’ (easily picked) fruit associated with BC risk have already 

been discovered, such as age and the BRCA genes. However, finding the BRCA genetic 

markers was very challenging using the techniques and information available at the time they 

were discovered.  Ongoing discovery of additional markers and techniques with which to model 

risk and improve cancer prediction will assist with improved risk prediction [365].  Prediction 

models may therefore become extremely complex in order to reliably foretell which women will 

develop BC. It may then be possible to undertake even more closely tailored interventions to 

prevent BC.  Early detection of BC via as yet unknown biomarkers may be a viable alternative 

pathway to improved health outcomes if highly effective treatments with minimal side-effects 

are developed.   

 

 

2.10  Summary of factors that are associated with mammographic density 
 

To better understand the etiology of mammographic density, the exploration of the relationship 

between breast cancer risk factors and mammographic density has been intensely studied. 

Many— but not all— risk factors which are associated with breast cancer are also associated 

with mammographic density.   In particular, the breast cancer risk factors age, menopausal 

status, height and weight (BMI), parity, and heredity are all strongly associated with percent 

mammographic density.  Mammographic density usually decreases with age, after menopause 

and with each birth; the protective effects of these events against breast cancer may be 

modulated via breast density.  Other breast cancer risk factors such as duration of breast 

feeding, age at first birth and age at menopause have less marked effects upon breast density 

and breast cancer risk, but these BC risk factors may also be mediated via breast density 

 

It is necessary to collect information on the various factors that affect mammographic density 

because they can have a marked effect upon the interpretation of the BC risk posed by breast 

density [192, 198, 203].  In particular, age, menopausal status and BMI (body mass index) can 
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confound research results.  For instance, a breast which is half covered dense tissue (50% dense) 

may not be uncommon at 40 years of age, but as seen in Figure 2-9, it is rare to find women 

aged 55 and over with highly dense breasts.  50% density at age 40 is far less likely to be 

strongly associated with breast cancer risk than it is at age 60.     

 

The effects of age on breast density observed at the population level may be mainly mediated 

through decreases in breast density experienced by most women due to parity, breast feeding, 

declining hormone levels during the peri-menopausal period as well as the rapid decline in 

endogenous hormone levels during the menopausal transition.  The effects of body mass index 

on percent mammographic density are easier to explain.  BMI is inversely associated with 

percent mammographic density because as BMI increases, additional fat accumulates in the 

breast without a concomitant increase in the amount of dense tissue.  Both age and BMI are 

strongly and negatively associated with mammographic density; models utilising percent 

mammographic density as the dependent variable should control or account for both these 

factors at a minimum [178].  Whilst breast density in most women decreases with age, certain 

factors appear to keep density levels elevated in some women.  Despite the combined effects of 

age, child birth, breast feeding and menopause, some women appear to retain most of the breast 

density they first developed at puberty.  The biology underpinning the loss of breast density in 

most women as they age, as well as why density appears to be retained in others, is not yet 

known [366].   

 

Breast density is also modifiable in many women via hormonal manipulation.  Therapies such 

as HRT which increase estrogen tend to increase MD, as well as BC risk.  Therapies such as 

tamoxifen, anastrozole and GnRH inhibitors which decrease the availability of estrogen tend to 

reduce MD, as well as BC risk.  Whether the women who show strong responses to hormonal 

treatments also exhibit marked changes in MD due to age, child bearing, breast feeding and 
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menopause is not yet known. Further research into the biology underlying radiologically dense 

breasts is needed.   

 

The next chapter describes the methods for this project, which include a description of the IBIS-

II breast cancer prevention trial, ethics approvals, methods for mammogram collection and 

deidentification, as well as an introduction to the statistical methods used in this thesis. 
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3. Methods used in this Thesis 

 

The majority of this thesis involves mammographic data from the IBIS-II trial.  This chapter 

describes the IBIS-II trial and trial outcomes.  The statistical methods utilised in the thesis are 

introduced.  The ethics approval and mammogram collection processes are described. The 

digitisation and anonymisation process utilised on the IBIS-II mammograms is explained.   

 

Additional, potential projects involving other Australia and New Zealand Breast Cancer Trials 

Group (ANZ BCTG, now known as ‘Breast Cancer Trials’) studies were discussed with the 

candidate’s principal supervisor, however most of the projects were not deemed practical for 

various reasons including time elapsed since the trial was undertaken, and too few local 

(Newcastle) participants in the trial. Two additional projects were undertaken by the candidate 

in addition to the IBIS-II study reported in this thesis: 1.) an MD linkage study collecting data 

from healthy screening women attending NSW BreastScreen, the 45 and Up Study and the 

NSW Cancer Registry; and 2.) a longitudinal MD project utilising trial data and mammograms 

from Western Australian IBIS-I participants.  At this time, data from NSW BreastScreen was 

not linked with the NSW Centre for Health Record Linkage (CHeReL); the candidate worked 

closely with a Senior Research Officer at Cancer Institute NSW to ascertain which fields in the 

BreastScreen database would provide useful information during linkage.  The first project 

(BreastScreen and 45 and Up Study linkage) was taken to the ethics approval stage but was 

abandoned due to lack of funding, whilst the second received ethics approvals but was not able 

to collect sufficient mammograms to provide analysable data.   

 

3.1  IBIS-II Prevention trial methods 
 

IBIS-II study rationale 

The International Breast cancer Intervention Study II (IBIS-II) trial of anastrozole vs placebo 

was created to continue the work of the IBIS-I trial (BC prevention with tamoxifen vs placebo).  
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In IBIS-I, 7,154 breast cancer-free women from Australia, New Zealand, the UK and Europe 

aged 35 and up at elevated (~2-fold) risk of breast cancer were randomised to five years 

treatment of tamoxifen (TAM) or placebo.  At 96 months median of follow up, IBIS-I 

participants treated with tamoxifen had an overall 27% reduction in BC incidence: (relative risk 

(RR) 0.73, 95%CI 0.58 – 0.91)[367].  Most undesirable side-effects and medically important 

adverse events from TAM— such as hot flushes, deep vein thrombosis and pulmonary 

embolism— ceased at the end of the 5 year treatment period, however the reduction in BC 

continued for at least another 5 years after the end of treatment. 

The third generation aromatase inhibitors (AI)— anastrozole, exemestane and letrozole— have 

favourable side effect profiles compared to TAM and other serum estrogen receptor modulators 

(SERMs).  These AI were first shown to be effective in the treatment of hormone sensitive 

(HS+) advanced (metastatic) BC [95]. Head to head trials of TAM vs AI for adjuvant treatment 

of HS+ early BC show improved disease free survival for the AI treated groups [98].  

 

 
Figure 3‐1 Expected reduction in ER+ BC incidence by anastrozole, IBIS‐II trial [JF Forbes] 
Contralateral estrogen receptor positive (ER+) BC incidence during treatment trials was reduced by half 
with TAM vs placebo, and halved again by treatment with anastrozole.  EBCTCG—Early BC Triallists’ 
Collaborative Group.  ATAC—Arimidex, Tamoxifen, Alone or in Combination.  Sourced from JF Forbes, 
2010 [368] 
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In particular, incidence of contralateral ER+ BC was approximately halved in the AI treated 

participants compared to the TAM treated participants [369].  Five years of TAM reduces the 

risk of contralateral ER+ BC by 50% compared to placebo treatment.  A further 50% reduction 

in ER+ BC with five years of preventive AI treatment was predicted, compared to women who 

did not undergo therapy [Figure 3-1].  This 75% estimated reduction in HS+ BC, along with the 

favourable side effect profile, supported the use of AI for BC prevention.   

 

IBIS-II Aims 

The IBIS-II (Prevention) trial is an international multi-centre trial of anastrozole vs placebo in 

post-menopausal women at elevated risk of developing breast cancer.  Given the high 

desirability of preventing BC and improved the efficacy and side effect profile of AI as an 

adjuvant treatment for hormone-sensitive (HS+) BC, IBIS-II was developed to further 

investigate the use of anti-estrogen treatment in the prevention of HS+ BC.  

 

The overall aim of the IBIS-II trial was to determine if anastrozole was effective at prevention 

of breast cancer in women at elevated risk of the disease.  Secondary aims were: to examine the 

role of anastrozole in preventing ER+ BC and BC mortality; to examine the effect of 

anastrozole on other cancers, cardiovascular disease, fracture rates, and non-breast cancer death; 

and determine the tolerability and acceptability of side effects from trial treatment.  

 

Eligibility Criteria 

Because AI are only effective in post-menopausal women, IBIS-II participation was restricted to 

post-menopausal women (e.g. over age 60, or 12+ months of amenorrhea with an intact uterus).  

To enhance the risk to benefit ratio, only women at elevated (~2-fold) risk of BC were eligible 

for the trial.   

 

The elevated BC risk required to enter the trial differed by age.  Women aged 45 to 70 were 



 Chapter 3 
 

78 

eligible if they were at double the risk of BC compared other women their age (e.g. a first 

degree relative with BC diagnosed at age <50).  Women aged 40 to 44 needed to have 

approximately 4-fold the average risk of developing BC, such as two or more first or second 

degree relatives who developed BC or ovarian cancer at age ≤ 50.  Women aged 60 to 70 are 

already at elevated risk due to age, hence women in this age group could also enter the trial with 

slightly lower risk (~1.5RR, e.g. a first degree relative with BC diagnosed at any age) than their 

younger counterparts.  Women aged 40 to 70 at higher risk due to certain breast conditions, 

such as lobular carcinoma in-situ (LCIS) or benign atypical or lobular hyperplasia, were also 

eligible to enter the trial. 

 

Interestingly, mammographic density covering at least 50% of the breast area (in the absence of 

HRT use) for women aged 45 to 70 was included as an entry criterion.  However, this eligibility 

criterion was rarely utilised.  This was most likely due to the difficulty in obtaining information 

about PD by potential participants, as well as low general awareness (both in the general and 

medical communities) about the status of MD as an independent BC risk factor.   

 

Trial exclusion criteria included pre-menopausal status, most cancers, an intention to continue 

HRT, osteoporosis, and other conditions which made the candidate unsuitable for trial 

participation including gluten sensitivity.  Previous SERM use for >6 months was also a trial 

exclusion criteria, except for IBIS-I participants (whose treatment status remains blinded). 

 

In addition to the trial inclusion criteria mentioned above (post-menopausal status, elevated BC 

risk) participants were required to have a normal (BC-) mammogram within 1 year of trial entry 

as well as spinal and bone mineral (DXA) scans to prove they did not have osteoporosis.  

Signed, fully informed consent was obtained.  From June 2007, a protocol amendment allowed 

participation for IBIS-I participants if they met all trial entry criteria and had ceased IBIS-I trial 

treatment at least 5 years previously. 
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Trial Activation and Recruitment 

International activation of the trial commenced in January 2003.  Originally, a trial accrual of 

6000 participants was estimated to detect a difference in BC incidence of 50% between the arms 

of the trial, at the 5% significance level with 95% power.  However, the 2011 interim observed 

incidence of 6.6 BC events/1,000 women in IBIS-II was higher than the 6 BC events/1,000 

women projected as per IBIS-I.  A protocol amendment in September 2011 subsequently 

included a recalculated target sample size of 4,000, with a minimum sample size of 3,500 

women, to have >90% power to detect the required difference between the arms at the 5% 

significance level. 

 

Twenty-six IBIS-II (Prevention) centres were activated in Australia, as well as four in New 

Zealand.  The majority of the Australian centres were in the states of New South Wales (13) and 

Victoria (8), however two centres were activated in Queensland, and one each in South 

Australia, Tasmania and Western Australia.  Recruitment of Australian participants occurred 

primarily in response to media releases (via print (e.g. newspapers), radio and internet) 

coordinated by the ANZ BCTG and participating hospitals.  Interested women phoned an 

Australia-wide 1-800 number to contact the ANZ BCTG in Newcastle or their local centre.  

Trial enquiries received by the ANZ BCTG were forwarded to the nearest centre activated for 

IBIS-II.  

 

As of the trial accrual closure on 15 February 2012, a total of 818 women were randomised at 

ANZ BCTG participating centres.  New South Wales (NSW) accrued the largest number of 

participants in Australia (319), approximately half of which (142) were randomised at the 

Calvary Mater Newcastle hospital (CMN).  The next largest accruing centre in NSW was The 

Breast Centre, Gateshead with 37 participants.  As for IBIS-I, Sir Charles Gairdner Hospital 

(SCGH) in Western Australia accrued the highest number of IBIS-II participants (153).  One 

hundred and eight IBIS-II participants were randomised in Victoria, which had the third highest 
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accruing Australian centre (44 participants at St Vincent’s Hospital, Melbourne).  One hundred 

and ninety-one participants were randomised in New Zealand; almost half of the NZ 

participants (90) were randomised at Waikato Hospital.   

 

Informed Consent, Data Collection, and Randomisation  

The fully informed consent included an explanation about the trial entry and exclusion criteria, 

pre-trial entry procedures (mammography, DXA bone mineral density scans), medication (1 

mg/day anastrozole tablet or placebo tablet for 5 years) and follow up clinic visits (at 6 months, 

12 months, then yearly in years 2 to 5).  Annual clinic visits or posted questionnaires were 

undertaken in years 6 to 10.   

 

Subjects were randomised to receive either five years of anastrozole 1mg daily or an anastrozole 

placebo.  Both the participant and the clinical teams at participating centres are blinded to the 

participants’ treatment allocation (double blind trial).  Randomisation was stratified by centre, 

with retrospective stratification by risk factor taking place at the time of analysis.  Blocks were 

used to maintain balance between the groups, and randomisation occurred centrally via a 

randomisation centre in the UK.   

 

Mammographic data: Trial mammograms were taken annually.  The four standard 

mammographic Views (right craniocaudal (CC), left CC, right medio-lateral oblique (RMLO) 

and left MLO) were collected at each mammographic episode.  An additional, optional consent 

for permission to use trial mammograms for breast density studies by the ANZ BCTG and 

Cancer Research UK was requested during the reconsent process undertaken by all participants 

after a September 2011 protocol amendment.   

 

Australian imaging centres underwent the transition from analogue (film) to digital 

mammography during the recruitment and follow up period of the IBIS-II trial.   
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Study endpoints: The primary endpoint for the trial was development of histologically-proven 

BC (either invasive or non-invasive (DCIS)).  Secondary endpoints were mortality from BC, 

total mortality, and cause-specific mortality.   

 

Adverse events: Anastrozole has been in clinical use for the treatment of BC since 1995 and is 

generally well tolerated.  The following very common (≥10% prevalence) and common (1% to 

10% prevalence) ‘side effect’ adverse events (AE) were collected at the 6 month and 12 month 

visits, and yearly thereafter to 10 years: arthralgia, hot flushes/night sweats, vaginal changes, 

eye disease/cataracts, osteoporosis/fracture, and ‘other’ side effects.  Grade of severity (none, 

mild, moderate, severe) was also recorded.  Potentially life-threatening, primarily uncommon 

(<1% prevalence), medically serious AE (SAE) were also recorded for each visit: myocardial 

infarction, cardiovascular events, thrombo-embolic disease, stroke/transient ischaemic 

events/cerebrovascular events, gynaecologic events, cancer other than breast, and ‘other’ SAE.  

 

Follow up is still underway, with an anticipated completion date of February 2022. 

 

Ethics and Governance 

Ethics approval was first received from North West Multicentre Research Ethics Committee in 

the UK.  Each participating Australian and New Zealand centre received approval for the study 

from their local human research ethics committee from June 2005 onwards.  Activation of the 

IBIS-II trial in 2005 pre-dates the use of the ‘harmonised’ NHMRC single-ethics review and 

approval process in Australia.  Hence each participating centre needed to receive approval for 

original IBIS-II protocol as well as all six IBIS-II protocol amendments from their respective 

ethics committees.  Each centre also underwent local review of trial governance— a site specific 

assessment— to ensure that the resources needed to undertake the trial (e.g. principal 

investigator, trial coordinators, pharmacy staff, space to house trial data and meet with 

participants) were available and that the trial complied with local regulatory requirements (e.g. 

trial indemnity/insurance, trial agreement contracts, responsible research conduct).   Participants 

whose mammograms were utilised in this thesis were recruited from the Calvary Mater 
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Newcastle (CMN) hospital.  CMN received ethics approval for the IBIS-II trial from the Hunter 

New England Human Research Ethics Committee (HNE HREC) in June 2005. 

 

The September 2011 protocol Amendment mentioned above also included a reconsent request 

to all IBIS-II participants. Reconsent to continue participation in the IBIS-II trial was requested 

due to the positive results of the MAP.3 BC prevention trial of exemestane vs placebo.  MAP.3 

trial participation was unblinded at a median of 3 years of follow up; MAP.3 participants 

randomised to placebo were allowed to crossover to five years of exemestane treatment.  The 

IBIS-II trial steering committee considered the MAP.3 results too early to be definitive.  IBIS-II 

participants were advised of the MAP.3 results and asked to reconsent to continued participation 

in the IBIS-II trial.   

 

This IBIS-II trial reconsent process allowed participants agree to optional consent for 

mammographic density studies and optional consent for blood and tissue biomarker studies.   

ANZ BCTG participants were asked for their permission to utilise their trial mammograms for 

(ethically approved) studies at both the ANZ BCTG and CRUK. 

 

All trials undertaken by the ANZ BCTG are investigator-led; whilst the trial funding may be 

provided by pharmaceutical companies, the trial design, implementation, data collection, 

analysis and publication are the responsibility of the ANZ BCTG study chairs and other 

investigators.  Responsibility for trial conduct is undertaken via three levels of management. 

Each centre’s principal investigator is responsible for the conduct of the trial at their centre. An 

ANZ BCTG trial study chair is responsible for trial conduct at all ANZ BCTG centres.  Because 

IBIS-II is an international trial, three international study chairs are also responsible for 

coordination and implementation of the trial worldwide, via one or more of each local country’s 

(investigator-led) oncology research organisation/s such as the ANZ BCTG and the German 

Breast Group (GBG)).   
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3.1.1  IBIS-II trial results 
 

The study closed to recruitment on 15 February 2012.  Total international accrual to the study 

was 3864 participants: 1920 in the Anastrozole group and 1944 in the placebo group. Final 

accrual at all ANZ BCTG centres was 818 participants, including 142 at the Calvary Mater 

Newcastle hospital. 

 

Selected baseline characteristics for all 3864 participants are shown in Table 3-1. Baseline 

characteristics not shown in Table 3-1 were also balanced between the treatment groups.  For 

example, the number of first or second degree relatives who developed BC by a certain age— 

e.g. a first degree relative with BC at age ≤ 50 years— were similar for both treatment groups. 

  
 
Table 3‐1 Selected IBIS‐II participant baseline characteristics by Treatment Group. 

Adapted from Cuzick, Sestak, Forbes et al 2014 [26] 

Baseline characteristic 
Anastrozole group 

(n=1920) 

Placebo group 

(n=1944) 

Age (years)  59.5 (55.0 to 63.5)  59.4 (55.1 to 63.3) 

Age at menarche (years)  13.0 (1.2 to 14.0)   13.0 (12.0 to 14.0) 

Parous (yes)  1601 (83%)   1637 (84%) 

Age at first birth (years)  24.0 (21.0 to 27.0)   24.0 (21.0 to 27.0) 

Age at menopause (years)  50.0 (45.0 to 52.0)   49.0 (45.0 to 52.0) 

Height (cm)  162 (158 to 166)   162 (158 to 167) 

Weight (kg)  71.8 (64.0 to 82.2)   72.1 (64.0 to 83.5) 

Body mass index (kg/m2)     

<25  581 (30%)   568 (29%) 

25 to 30  699 (36%)   732 (38%) 

>30  640 (33%)   644 (33%) 

Previous HRT   893 (47%)   910 (47%) 

HRT within 12 months prior to randomisation  128 (7%)   152 (8%) 

Hysterectomy  631 (33%)   656 (34%) 

10–year Tyrer–Cuzick risk (%)  7.6% (5.8 to 9.9)   7.8 (5.1 to 10.2) 

Data are median (Q1 to Q3) or n (%) 
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At 5 years median follow-up, 85 IBIS-II participants assigned to placebo developed breast 

cancer (4%) versus 40 women in the anastrozole group (2%) [26].  The number of invasive BC 

was significantly halved on anastrozole: 32 vs 64 for placebo, a hazard ratio (HR) of 0.50 (95% 

CI 0.32–0.76); p-value from Cox proportional hazards regression model = 0.001.  Invasive ER+ 

tumours were also significantly reduced by anastrozole: 20 vs 47 for placebo, a HR of 0.42 

(95% CI 0.25–0.71); p-value 0.001 from Cox proportional hazards regression model. However 

the proportion of ER- tumour numbers was not significantly affected: 11 for anastrozole vs 14 

on placebo (HR 0.78, 95%CI (0.35–1.72), p=0.53, Cox proportional hazards regression model).   

 

Two deaths from BC were reported in the anastrozole group versus none in the placebo treated 

group. Ten deaths from other cancers were reported for the placebo group, whilst seven were 

reported for the anastrozole treated group.  However, no specific causes of mortality were more 

common in one group versus the other (p=0.836, relative risk model).  Overall mortality was 

similar between the groups: 18 for anastrozole (1%) and 17 for placebo (1%).   

 

The frequency of adverse events between treatment groups was compared using relative risks 

(RR), with Fisher’s exact tests where appropriate.  Interestingly, this double-blind study showed 

no overall difference in adverse event frequency between the groups, Table 3-2. However, small 

but statistically significant increases of ~10-15% in certain types of very common (~50% 

prevalence) adverse events— arthralgia, hot flushes/night sweats— were present in the 

anastrozole treated group.  A dose-response effect of grade (mild, moderate, severe) for 

arthralgia appeared to be present, with those in the anastrozole treated group at significantly 

higher risk of moderate and non-significantly at higher risk of severe symptoms.  Other 

musculoskeletal symptoms (joint stiffness and carpal tunnel syndrome/nerve compression) were 

also significantly elevated in the anastrozole treated group. 
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The frequency of fracture, including subgroups of fracture by location (arm, leg, pelvic/hip, 

rib/spine/collarbone, skull) was not statistically different between the groups. Overall 

gynaecological symptoms, vascular effects (including myocardial infarction, cardiac failure and 

thrombosis), eye symptoms and infections were not statistically different between the treatment 

groups.  However, the relative risks for certain subgroups of these symptoms were significantly 

higher in the anastrozole treated group (RR (95% CI)): vaginal dryness 1.19 (1.03 to 1.37); 

hypertension 1.64 (1.18 to 2.28); dry eyes 1.45 (1.04 to 2.01), influenza 2.11 (1.06 to 4.19) and 

otitis media 3.04 (1.21 to 7.64). 

 

Table 3‐2 Selected IBIS‐II AE frequencies by Treatment Group 

Adapted from Cuzick, Sestak, Forbes et al 2014 [26] 

Adverse Event  
Anastrozole  

(n=1920) 

Placebo  

(n=1944) 

Risk Ratio 

(95% CI) 

Any AE (medically non‐serious and serious)  1709 (89%)  1723 (89%)  1.00 (0.98 to 1.03) 

Fractures, all  164 (9%)  149 (8%)  1.11 (0.90 to 1.38) 

Musculoskeletal, all  1226 (64%)  1123 (58%)  1.10 (1.05 to 1.16) 

Arthralgia   972 (51%)  894 (46%)  1.10 (1.03 to 1.18) 

Mild  385 (20%)  386 (20%)  1.01 (0.89 to 1.15) 

Moderate  422 (22%)  363 (19%)  1.18 (1.04 to 1.33) 

Severe  151 (8%)  123 (6%)  1.24 (0.99 to 1.56) 

Joint stiffness  143 (7%)  96 (5%)  1.51 (1.17 to 1.94) 

Pain in hand or foot  178 (9%)  147 (8%)   1.23 (0.99 to 1.51) 

Carpal tunnel syndrome/nerve compression  67 (3%)  43 (2%)  1.58 (1.08 to 2.30) 

Vasomotor (hot flushes, night sweats), all  1090 (57%)  961 (49%)  1.15 (1.08 to 1.22) 

Mild  550 (29%)  504 (26%)  1.10 (1.00 to 1.22) 

Moderate  390 (20%)  330 (17%)  1.20 (1.05 to 1.37) 

Severe  150 (8%)  127 (7%)  1.20 (0.95 to 1.50) 

Data are n (% of group) 

 

 

The estimated five-year adherence to protocol treatment was 68% in the anastrozole group and 

72% in the placebo group.  Adverse events (20% of anastrozole participants vs 15% placebo) 

and patient refusal (5% in both groups) were the main reasons for discontinuation of treatment.   
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3.1.2  The International IBIS-II MD and AI study 
 

Mammograms from IBIS-II international centres are being collected by Cancer Research UK 

(CRUK) and Queen Mary University of London (QMUL) for an international mammographic 

density project.  An additional, modest reimbursement is paid to participating centres upon 

receipt of a set of entry, midpoint and final mammograms for each participant.  Mammograms 

are considered entry mammograms if they are within 18 months of randomisation.  Entry 

mammograms at baseline are ideal (i.e. taken on the mammographic date recorded on 

participants’ randomisation forms). If entry mammograms are not available then midpoint (18 to 

47 months post-randomisation) and final mammograms (18 to 66 months post-randomisation) 

are not required.  Medio-lateral oblique View mammograms are preferred, however medio-

lateral View mammograms are also accepted. 

 

Mammogram collection for the IBIS-II International MD and AI project commenced after the 

IBIS-II September 2011 protocol Amendment and trial reconsent mentioned previously, which 

enabled participants to provide additional optional consent for mammographic density and 

blood and biomarker studies.  The final IBIS-II participants will complete five years of 

randomised treatment in February 2017; hence it is anticipated that the final mammograms for 

the international IBIS-II mammographic density study will soon be collected.  It is anticipated 

that the international IBIS-II MD and AI study will compare longitudinal MD changes for the 

anastrozole treated group vs the control group, as well as whether any differences in MD change 

over time between the treatment groups are associated with differences in BC incidence.  

Results from the International IBIS-II MD and AI study have not yet been disseminated. 

 

3.2  The CMN IBIS-II MD and AI substudy 
 

The remainder of this thesis focuses on the CMN IBIS-II Mammographic Density and AI 

substudy.  The overall goal for this thesis was to characterise the relationship between MD and 
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an AI in the BC prevention setting.  This had not previously been undertaken for the third 

generation AI anastrozole.  Hence it was necessary to collect and measure MD on IBIS-II trial 

mammograms, and fit statistical models of the associations of MD for this nested cohort of 

IBIS-II participants. As discussed further below, the project for this thesis differed from the 

international IBIS-II MD and AI study in that it utilised annual IBIS-II trial mammograms from 

a single centre only, and examined MD growth (but not, presumably, differences in BC 

outcomes) between the treated and control groups.   

 

Two Aims were relevant to the investigation of the relationship of MD with other factors.  One 

Aim was to quantify the relationship between baseline MD and established, associated BC risk 

factors such as body mass index and age.  The other Aim, the Primary Aim (AIM 5) of this 

thesis, was to characterise longitudinal changes in MD for IBIS-II trial participants randomised 

to anastrozole and placebo, and ascertain if changes in longitudinal MD differed between 

treatment groups.   

 

Both of these Aims were dependent upon selection of a consistent, reliable and repeatable 

method to measure MD.  This led naturally to AIM 1 of this thesis— selection of a method or 

methods suitable to measure longitudinal MD on IBIS-II participant mammograms.  AIM 1 was 

subdivided into three sequential goals: 1.) undertake a review of the methods to measure MD; 

2.) determine which methods could be applied to the breast images available for the CMN IBIS-

II participants; and 3.) decide which method/s were likely to provide an easy to implement, 

reliable and accurate means of characterising MD for the sampled group.   

 

AIM 2 of this thesis was to quantify the reliability of the methods selected in AIM 1.  Until very 

recently, most methods for measuring MD had a subjective component (i.e. user input) which 

introduces additional variability into the measurements.  Because the estimated effect of 

anastrozole was small (1 to 2% decrease in MD) compared to the likely variability of the 
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measurements [29], selection of the technique with the lowest variability was important to the 

success of the project.  AIM 2 of this thesis was subdivided into separate sub-aims, according to 

the type of reliability to be tested: intra-observer reliability, inter-method reliability, acquisition 

technique reliability and repeated measurements inter-method reliability. 

 

AIM 3 of the thesis—descriptive statistics of the CMN IBIS-II participant characteristics and a 

cross sectional analysis of baseline MD with characteristics likely to be associated with MD— 

was accomplished by performing statistical measures of central tendency such as t-tests and 

Wilcoxon rank-sum tests, and regression analyses.   

 

AIM 4 of the thesis— development of a longitudinal model of change in mean MD for the 

aggregate of the treated and control groups— was completed by preparing a ‘mixed’ linear 

statistical model (one with both fixed and random effects) of mean change (‘growth’) of MD 

over time, adjusted for significant covariates and age.  Models for repeated measures data 

account for the violation of the assumption that all observations in the sample are independent 

from each other.  This is achieved by incorporating groups (also known as levels or hierarchies) 

into the models.  This type of model has a number of names: mixed model, multi-level model, 

nested model, random-coefficient model [370].  For the longitudinal data in this project, the 

mixed model description which best suits is ‘hierarchical linear’ model.  This is the most 

commonly used type of multilevel model, and is an extension of multiple linear regression 

[371]. After this mixed model was formulated, data and scripts to run a set of statistical models 

were forwarded to the IBIS-II trial statistician to test for differences in MD change over time 

between the treated and control groups.  This accomplished the Primary Aim (AIM 5) for this 

thesis.  
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3.2.1  Approvals for the CMN IBIS-II MD and AI substudy 
 

This project commenced in March 2010.  A subsequent internal approval process for the project 

was undertaken with the ANZ BCTG was completed in May 2011.  The Confirmation process 

at the University of Newcastle was successfully completed in February 2011.  An approval for 

the thesis Primary Aim (Chapter 8— MD average annual change in IBIS-II treated vs control 

groups) was sought and obtained in October 2016 from the IBIS-II international steering 

committee.  

 

After completing the internal approvals process with the ANZ BCTG in May 2011, the ANZ 

BCTG advised that an IBIS-II protocol amendment would be submitted shortly to the Hunter 

New England Health Human Research Ethics Committee (HNE HREC).  As previously 

described, IBIS-II participants were asked to reconsent to continue trial participation in their 

randomised groups because the trial steering committee believed it was too soon to consider the 

results of the MAP.3 trial definitive.  Optional consent for tissue, biomarker and mammographic 

density studies were included as part of the reconsent process.   

 

The ANZ BCTG requested that the ethics application for this project was deferred until after the 

IBIS-II protocol amendment was approved by the HNE HREC for CMN.  This request was 

made to lesson confusion between the International IBIS-II and local CMN IBIS-II MD and AI 

projects.  Although the protocol amendment was not released until September 2011, the upside 

of this request was that a waiver of consent for IBIS-II mammogram collection was not required 

from the HREC, as only participants who consented to the optional mammographic density 

studies would be included in both studies.  Consequently, only mammograms from Calvary 

Mater Newcastle participants who explicitly consented to use of their mammographic data were 

used in this project.  
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3.2.1.1 Ethics approval – Hunter New England Health HREC (HNE HREC) 

The IBIS-II protocol amendment was released by CRUK in September 2011, and forwarded to 

participating ANZ BCTG centres by the ANZ BCTG in October.  The amendment was 

approved for CMN by the HNE HREC in November 2011.  The approval for this CMN IBIS-II 

MD and AI project was granted by the HNE HREC in December 2011.   

 

Three variations to approval for this project were also approved by the HNE HREC: 

1. Expansion of mammogram collection to NSW centres other than the Calvary Mater 

Newcastle (2012) 

2. Data sharing with the CSIRO in relation to the AutoDensity program for measurement 

of MD (2013) 

3. Collection of IBIS-II data on covariates known to be potential confounders from the 

ANZ BCTG to improve statistical models (2014) 

 

3.2.1.2 Ethics approval – University of Newcastle HREC 

The approvals for this project from the HNE HREC were registered with the University of 

Newcastle’s HREC as per standard policy for University staff and students.  The ethics approval 

and variations for IBIS-II were registered and approved the University of Newcastle’s HREC in 

January 2012. 

 

3.2.2  Constraints on mammogram collection outside of CMN 
 

Initially, it was anticipated that mammograms from most IBIS-II ANZ BCTG participating 

centres would be available for use in this project.  However, various constraints precluded this.   

One of the principal constraints was imposed by the ANZ BCTG; others reflect the difficult 

nature of retrospective mammography collection.   
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In 2011, the ANZ BCTG requested that all IBIS-II mammogram collection for centres outside 

of CMN be performed by the ANZ BCTG.  This was to lessen confusion for ANZ BCTG IBIS-

II participating centres about which project/s would be utilising IBIS-II mammograms.  Direct 

contact by the candidate and IBIS-II participating centres was not possible; all mammogram 

collection and requests for ethics and other approvals were managed by the ANZ BCTG and 

trial coordinators at ANZ BCTG IBIS-II participating centres.   

 

Although the HREC approvals for the September 2011 protocol amendment included an 

approval for the International MD and AI project, approvals for this project were not included. 

This additional overhead further decreased the possibility that many IBIS-II mammograms 

outside of CMN would be available for this local MD and AI substudy, because each IBIS-II 

centre would need to gain local HREC approval to contribute mammograms to this project.  

 

Whilst an Australian mutual HREC acceptance process for multi-centre interventional clinical 

trials research commenced in early 2012, interstate multi-centre interventional clinical trials 

approved prior to 2012 such as IBIS-II were not eligible for this process.  Projects approved by 

the earlier process as described above for IBIS-II (i.e. each site submitted separate approvals to 

its own local HREC) continued to operate in accordance with the earlier process. However, 

mutual acceptance for HREC approvals within the NSW public health system has been 

operational since late 2007.  Ethics committees in NSW are permitted to accept the ethics 

approval from another NSW HREC.   

 

HREC approval was received in 2012 for a letter sent to NSW IBIS-II Principal Investigators to 

request their assistance with collection of mammograms for this local IBIS-II MD project.  The 

ANZ BCTG trial coordinators forwarded this request to NSW centres in 2012 and 2013. One 

centre in NSW with seven IBIS-II participants, Southern Highlands Cancer Centre, kindly 

completed the NSW mutual acceptance process.   
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Given that all clinical trial activities undertaken at participating centres need to be fully funded, 

funding to cover the costs of the additional ethics approvals needed for this project may have 

made participation more attractive for IBIS-II centres.  Similarly, trial coordination activities 

undertaken by the ANZ BCTG need to be supported.  Although funds were forwarded to the 

ANZ BCTG for mammogram collection for this project, funding for ANZ BCTG personnel 

dedicated to mammogram collection for this project would likely have increased access to IBIS-

II mammograms. 

 

3.2.3  Sample size calculations  
 

Sample size estimates for this project were initially informed by the MAP.1 study, a randomised 

control trial of one year of treatment with letrozole vs placebo for BC prevention in high-risk 

women [29].  Percent (mammographic) density is the proportion (percentage) of the total breast 

area covered by the dense tissues of the breast.  Table 3-3 lists percent density (PD) measured 

from mammograms of the MAP.1 participants at baseline, and 12 and 24 months post-

randomisation.  Differences in PD for both between- and within-treatment group comparisons 

for MAP.1 were made using a Wilcoxon test with a two-sided significance level of 0.05.   

 

Based on these results, treatment with anastrozole was estimated to yield a 1.5 percent 

difference in mammographic density compared to the placebo group at 1 year with a standard 

deviation of 8. However, due to uncertainty around this estimate, a range of power estimates 

was calculated for varying effect sizes (MD differences of 1 to 2%) and sample sizes of 125 to 

250 participants per group, based on a two-sample comparison of means (Table 3-4).   

 

As shown in Table 3-4, for an adequate power of 80%, mammograms from a total of 500 

participants (250 participants from each arm) would be required if the difference in mean PD 

was 2%.  As described previously, final accrual (February 2012) was 818 participants at ANZ 
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BCTG centres.  If it had been possible to collect most baseline and first year mammograms 

from the participants, the project might have yielded an adequately powered, statistically 

significant result for the difference in mean MD between groups.   

 

Table 3‐3  MAP.1 changes in mammographic percent density  

Adapted from Cigler et al 2010 [29] 

Density  Statistics  Letrozole  Placebo 

Unadjusted 
p‐value, 
between 
treatments 

Adjusted p‐
value,   
between 
treatmentsa 

At baseline  N  31 19 NC  NC 

  Mean 39.6 40.0  

  SD  20.0 15.9  

  95% CI (32.3, 47.0) (32.4, 47.7)  

Change at 12 months  N  30 19 0.67  0.61

  Mean –1.74 –0.24  

  SD  5.65 9.34  

  95% CI (–3.85, 0.37) (–4.47, 4.26)  

  P‐valueb 0.10 0.91  

Change at 24 months  N  27 16 0.69  0.61

  Mean –0.01 –1.32  

  SD  9.81 14.15  

  95% CI (–3.89, 3.87) (–8.86, 6.22)  

  P‐valueb 0.99 0.71  

SD — standard deviation, 95%CI — 95% confidence interval, NC — not computed 
a Adjusted for age and BMI at baseline 
b For the comparison of change from baseline within treatment group 
 
 
Table 3‐4 Estimated power to detect a difference in IBIS‐II mean PD, treated vs control 

 

If the more likely outcome of a smaller 1.5% difference in PD was observed, a total sample size 

of 500 would result in an insufficient power of 0.55.  Smaller sample sizes and smaller mean PD 

differences would provide even lower power to detect a difference between the IBIS-II 

# 
participants 
per group 

Mean PD change between treated and control groups 

1.00  1.25  1.50  1.75  2.00 

125  .165  .232 .313 .405  .503

150  .189  .270 .366 .471  .578

175  .213  .307 .416 .532  .645

200  .238  .344 .464 .588  .703

225  .262  .379 .509 .639  .754

250  .286  .414 .552 .685  .797
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treatment groups if one existed.  Even if the two largest accruing IBIS-II centres were 

specifically targeted— the Calvary Mater Newcastle hospital (142 participants) and Sir Charles 

Gairdner Hospital in Western Australia (153 participants)— this was likely to yield 

approximately 125 participants per treatment arm.  As per Table 3-4, even with a large MD 

mean difference between groups of 2% and 125 participants per group, the power to detect a 

treatment difference at ~12 months post-randomisation was low  (~0.5).   

 

These sample size calculations showed comparison of the mean difference in PD between 

treatment groups was unlikely to yield a useful outcome for this project.  Comparisons of means 

makes good clinical sense; comparison of treatment group means is a popular outcome utilised 

for MD measurements, as seen for IBIS-I participants [296], and other AI treatment studies [28, 

29, 31, 32, 304, 312, 313].  If it can be shown (as for tamoxifen) that a defined decrease in MD 

at a certain time after starting AI treatment is associated with clinical efficacy, then it is likely 

worth measuring change in MD over this time period.  It would clinically useful to know for 

instance, that women who experience a 5% or greater decrease in MD twelve months after 

treatment with an AI are highly likely to remain BC free in 10 years’ time. A difference in 

means measured at two time points also makes economic sense, because additional, unnecessary 

and expensive collection and measurement of a biomarker (e.g. mammograms, in the case of 

MD studies) at other time points is not required.  Due to the limitations on collection of the 

IBIS-II MD data, the small expected effect size, as well as changes in mammographic technique 

(film vs digital mammography), comparisons of mean MD for the treatment groups was not 

suitable for this project. Another approach was needed.   

 

Because multiple sets of annual mammograms were available for many IBIS-II participants, 

change in MD over time between the IBIS-II treatment groups could also be examined using 

longitudinal (repeated measurements) statistical models.  Sample size calculations for 

longitudinal data models incorporate the same parameters used to calculate samples sizes for the 
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difference in means between two groups— type 1 error rate (α), smallest meaningful difference 

(Δ), power (1-β), and variability (σ).  Two additional parameters are also required— the number 

of repeated observations per person (n) and the correlation among the repeated observations (ρ) 

[22].   

 

The correlation (ρ) within the data has opposite effects on the sample size depending upon the 

outcome being measured.  Increasing correlation decreases the sample size needed for studies 

examining the rate of change between two groups.  The opposite is true for sample size 

calculations for a “time-averaged difference in a response between two groups” [22], where 

increasing correlation between the groups increases the required sample size by effectively 

increasing the variance.  

 

Repeated measurements sample size calculations were undertaken in Stata Version 12.1.  For a 

difference in means of 2, standard deviation of 8, for one baseline measurement with three 

follow up measurements, a sample size of 67 per group was required (double sided p-value of 

0.05, power 0.8 with correlations of 0.8 between baseline and follow ups).  This is much closer 

to the actual sample size acquired of 120 total CMN participants, with an average of 4.5 

mammographic episodes (follow ups) per participant. A difference in means of 1% PD 

however, increases the sample size to 268 per group, which is beyond the scope of this project. 

 

 

3.2.4  IBIS-II mammogram collection 

3.2.4.1 Collection of mammograms via the ANZ BCTG 

As previously described, collection from centres other than the Calvary Mater Newcastle were 

coordinated only by the ANZ BCTG. The Southern Highlands Cancer Centre completed the 

NSW reciprocal HREC approval process; fifty-one mammograms comprising 14 

mammographic episodes from six participants were collected.  
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Calvary Mater Newcastle mammograms not received directly from the CMN trial coordinators 

were forwarded via a shared drive on an ANZ BCTG server for use in this project by ANZ 

BCTG IBIS-II coordinating staff. 

 

3.2.4.2 Collection of mammograms via the Calvary Mater Newcastle Hospital 

In order to maximise the potential information from the available sample of IBIS-II participants, 

the decision was made to collect all available mammographic data for as many follow ups from 

as many CMN participants as possible.  This meant all four standard mammographic Views— 

the right cranio-caudal (RCC), left CC (LCC), right medio-lateral oblique (RMLO) and LMLO 

Views— were collected for all available mammographic episodes.  Given the inherent 

variability in most popular (subjective) methods used to measure MD, use of all four Views 

would likely provide a more consistent representation of each mammographic episode’s MD. 

 

The majority of the ~2000 mammograms collected for the project were supplied via the IBIS-II 

Calvary Mater Newcastle (CMN) Department of Surgical Oncology trial coordinators.  Two 

rounds of mammogram collection were undertaken.  The first (Collection 1) was in 2012 after 

ethics approval was granted in December 2011.  A second round of trial mammograms was 

collected in 2014 (Collection 2).  Collection 2 mammograms included mammograms taken in 

2013 and 2014, as well as mammograms taken at earlier dates.   

 

IBIS-II digital trial mammograms were forwarded by the CMN trial coordinators on DVDs 

from the Calvary Mater Newcastle Radiology department.  Film-screen and film copies of 

digital mammograms were collected and digitised during participant IBIS-II trial clinic visits. 

All Calvary Mater Newcastle mammograms collected from the IBIS-II CMN trial coordinators 

were forwarded to the ANZ BCTG for the International IBIS-II MD and AI project. 
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To facilitate a second round of mammogram collection in 2014, the CMN IBIS-II coordinators 

sent reminders to the IBIS-II participants to bring their mammograms to clinic.  They also 

requested additional follow up mammography DVDs from the CMN Radiology department.  

Time constraints during the busy clinic typically precluded return of the mammograms during 

the clinic to the participant.  The trial coordinators were often too busy to forward the 

mammograms for digitisation until after completion of the clinic.  However, due to the time 

needed to digitise the mammograms it was also difficult to return the mammograms to the trial 

coordinator within the timeframe of participants’ clinic visits.    

 

Baseline mammograms were often elusive.  Whilst post-randomisation trial mammograms were 

taken at the CMN Radiology department, many IBIS-II participants undertook pre-enrollment 

mammograms at other locations.  Some mammograms taken at private imaging centres were 

destroyed due to the time between baseline mammography (e.g. 2008) and the first collection 

round (Collection 1) in 2012. Hence mammograms from outside facilities were rarely available 

unless participants brought them with them to a follow up clinic.   

 

In 2012, collection of a set of baseline mammograms from a participant at home was trialled.  

This was time consuming for the CMN IBIS-II coordinator, and not repeated. However, the 

second round of data collection in 2014 (Collection 2) yielded many additional mammograms, 

including a number of baseline mammograms.   

 

The transition from analogue (film-screen) to digital mammography at CMN took place in 

January 2009, 3.5 years after the trial was activated (all approvals were obtained) at CMN.  

Approximately half of 85 baseline mammographic episodes and half of 25 six–month episodes 

are film.  This proportion decreased to 13% by 12 months, and 1% at year 2 (1 of 93 total 

episodes).  Forty-five of 120 total CMN participants had at least one film-screen 

mammographic episode, whilst at least one digital mammographic episode was collected for all 
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120 participants.  Baseline mammograms were frequently taken at locations outside of CMN, 

however all annual (post-randomisation) mammography was performed on a single 

mammography machine at the CMN Radiology Department. 

 

A description of the process undertaken to select the scanner and de-identification software used 

in this project, and the method used to de-identify mammograms is contained in 

Deidentification Software and Mammogram Deidentification Method. 

 

A review of MD measurement techniques is undertaken in the next chapter, in order to ascertain 

which assessment techniques best suited this project.  All MD measurement assessments in this 

thesis were undertaken by a single reader (the candidate).  
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4. MD measurement techniques review 

This chapter achieves Aim 1 of the thesis, a review of the methods available to measure 

mammographic density [prior to 2014], to select techniques to use for this project.  Some of the 

numerous methods available to measure MD are reviewed, including visual assessment, two-

dimensional quantitative methods (e.g. Cumulus, Madena), three-dimensional methods (e.g.  

Volpara, Qantra) as well as other techniques such as MRI, ultrasound, DXA (dual-energy x-ray 

absorptiometry) and spectroscopy.  The chapter concludes with a rationale for the selection of 

three techniques chosen to measure MD on the CMN IBIS-II mammograms.  

 

4.1 MD measurement technique selection 
 

Selection of the most appropriate acquisition and measurement techniques for the IBIS-II 

mammograms was determined.  Many techniques have been developed to quantitate breast 

density.  Most are based on popular imaging methods, such as mammography (traditional two-

dimensional (2D) mammography (x-rays of the breast), and tomography), MRI, ultrasound, 

DXA/single (S)XA, and PET (positron emission tomography) [372].  Because mammograms 

were collected retrospectively for this project, and only mammograms were available (not for 

example ultrasound and/or MRI images, two other popular breast imaging modalities), choice of 

technique was immediately restricted to those suitable for retrospectively collected 

mammograms.   

 

This chapter also contains a non-exhaustive description of the more well-known and commonly 

used methods to measure breast density.  These are included because they may be suitable for 

screening for breast density and/or BC, and therefore for use in longitudinal breast density 

projects where breast images are prospectively collected.  Three dimensional (3D) breast 

imaging and density estimates are becoming more widespread, and hence are of interest. Please 

refer to recent [2015 & 2017] reviews for a more comprehensive discussion of available breast 

and mammographic density measuring techniques [317, 372]. Most longitudinal breast image 
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data sets, however, are comprised of (2D) mammograms because this is the current modality 

used by screening programs [373].  Hence this chapter primarily focuses on techniques 

applicable to this method of breast imaging. 

 

As stated previously, the estimated decrease in MD in response to an aromatase inhibitor was 

small (~2%); therefore selection of the acquisition and measurement technique with the smallest 

amount of variability (i.e. most reliable technique) that was capable of detecting change on 

retrospectively collected mammograms, was core to detecting change in density on the trial 

mammograms.   

 

Most techniques in common use to assess mammographic density are subjective and/or time-

consuming.  Visual methods are quick to use, but have larger margins of error due to 

subjectivity compared to computer-assisted or automated methods.   

 

4.1.1 Wolfe’s parenchymal patterns 
 

John Wolfe, a radiologist based at the Hutzel Hospital in Detroit Michigan USA, first described 

an association between a visual assessment of mammographic tissue composition and BC in 

1967 [374].  The “roentgenographic appearance of the parenchyma” was affected by age, parity 

and possibly by the hormonal influence of natural versus surgical menopause.  A prominent 

duct pattern signalled an increased likelihood of existing breast cancer, and he speculated that 

the patterns could possibly be related to future breast cancer risk [374, 375].  His discovery was 

controversial because MD’s sole association with BC at that time was its ability to impede BC 

detection on mammograms.   

 

The Wolfe patterns were a qualitative assessment of breast density, and therefore were 

subjective.  One difficulty with early studies of breast density found by critical reviews [132, 

134, 135] was the lack of reproducibility by researchers who tried to implement Wolfe’s 
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parenchymal patterns, leading to conflicting results. Even Wolfe was not entirely consistent in 

applying the patterns [132].   

 

4.1.2 Tabar’s patterns  
 

Laszlo Tabar and colleagues developed a different qualitative method to describe the 

parenchymal patterns of the breast which uses a more detailed analysis of the anatomical 

features on a mammogram [84]. This method was also found to be difficult to implement, and 

provided similar reliability to that Wolfe’s parenchymal patterns in the assessment of BC risk 

[376, 377]. 

 

4.1.3 Other patterns  
 

Classification of the breast tissue using fractal patterns and other texture features has been an 

ongoing challenge, for example [125, 158, 360, 378-380], and has yielded interesting results 

such as a texture pattern which is a BC risk factor independent of PD [381], texture features 

which are correlated with PD on digital mammography and digital breast tomosynthesis images 

[382], and potentially correlated with endogenous hormonal exposure [126]. However, these 

methods have not been adopted widely as measures of breast cancer risk due to the additional 

complexity imposed by pattern analyses.  A recent [2016] review summarises existing textural 

classification studies and future directions, and includes a call for large scale longitudinal 

studies incorporating BC risk [383]. 

 

4.2 Percent mammographic density  
 

Wolfe realised his breast parenchymal patterns caused difficulty in the burgeoning field of 

mammographic density research, and hence developed a more quantitative method for MD 

assessment. In 1987 he published a study which compared his Wolfe patterns and a new, 

quantitative method described as measurement of dysplastic involvement [234]. A planimeter 
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was used to calculate the area/s of density and the whole area of the breast as traced on sheet of 

plastic overlaid on a mammogram. Percent density was expressed as the sum of the dense areas 

divided by the area of the whole breast. The percent mammographic density calculated using 

this technique, like Wolfe’s parenchymal patterns, showed an increasing gradient of breast 

cancer risk as density increased. 

 

4.2.1 “Mammographic Density”  
 

The term ‘mammographic density’ first appeared in a journal article by Swann, Kopans et al in 

1987. The phrase ‘mammographic density’ was used interchangeably with ‘radiographic 

density’ in this publication which found little correlation between Wolfe’s parenchymal patterns 

and the size or compressibility of a breast [329]. 

 

Use of Wolfe’s parenchymal patterns was common in studies of breast density well into the 

1990s.  The introduction of visual scales for PD [116, 384, 385] from the early 1990s onwards 

as well as the advent of computer-assisted techniques in the mid to late 1990s to assess percent 

mammographic density [128, 289] helped PD to replace Wolfe’s patterns as the de facto 

standard measure of mammographic density.  The term ‘mammographic density’ today 

generally denotes the percent or area of a breast covered by dense tissue on a mammogram.   

 

4.3 Visual estimation techniques 

4.3.1 BI-RADS 
 

The most widely used MD measurement technique is the Breast Imaging-Reporting and Data 

System (BI-RADS) density categorization, part of the American College of Radiology’s BI-

RADS standardised image reporting framework [386].   

 

BI-RADS is a system that characterises the breast images created by mammography, breast 

ultrasound and MRI using standardised classifications.  The various components of a BI-RADS 
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report use the “Breast Imaging Lexicon” (standardised ways to describe imaging findings such 

as masses, calcifications, asymmetries) which culminate in a final assessment category for the 

patient.  The final assessment categories range from 0 to 6, an ordinal (ranked) numbering 

system that denotes outcomes from incomplete (0), negative (1) to malignant (6) [117].   

 

The BI-RADS system also incorporates a lexicon to describe the dense mammography tissues: 

the BI-RADS density categories for breast composition.  As mentioned previously, the BI-

RADS density categories were initially qualitative [116].  The categories subsequently became 

quantitative (quartiles of PD: 0-24%, 25-49%, 50-74%, 75%+) in the 4th Edition of BI-RADS 

[385], and have recently been revised to four new qualitative breast composition categories 

called A, B, C and D to lessen confusion between the BI-RADS density categories and the 

overall, final BI-RADS assessment category [119, 385].   

 

Four categories equivalent to the BI-RADS breast composition categories exist on Australian 

BreastScreen reports, but are not routinely completed. 

 

Although the BI-RADS density categories were created to describe the likelihood cancer was 

detected on a mammogram, they have been successfully utilised in many epidemiologic studies 

of BC risk [136], including longitudinal change in BI-RADS density [387, 388].  However, for 

the purposes of this project, the CMN MD and AI substudy, due to the small anticipated PD 

change of –2%, the quartile scale is too coarse and not suitable to detect longitudinal change in 

MD in IBIS-II participants [389].   

 

4.3.2 Six category classification (SCC) 
 

A six category classification (SCC) was created in 1994 [390].  The percent density categories 

for the SCC (also known as the Boyd scale) are: 0%, 1 to 10%, 11 to 24%, 25 to 49%, 50 to 

74% and 75-100%.  This classification system has had more limited use than the BI-RADS 
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density categories, but has proven useful as a research tool [194, 296, 331, 391-393].  A 

modified version of this scale was utilised in a seminal MD and BC risk paper in the New 

England Journal of Medicine [201]; this important article raised awareness of the association 

between MD and BC risk for a broad cross-section of the medical community  

 

Part of the six category classification’s usefulness is derived from its sub-division of the first 

BI-RADS 4th Edition density category (0 to 24% density) into 3 categories.  Most post-

menopausal women have low density (e.g. Fig 1of [137]), that is less than 25% of the breast 

area is covered by the dense glandular and connective tissue.  Subdivision of the first BI-RADS 

(4th Edition) breast composition category helps to overcome the loss of information which arises 

by assigning half to three-quarters of older women to a single category.  For instance, if any 

amount of density is associated with an increase in risk, this information is lost within a single 0 

to 24% category.  Creation of the first three SCC categories improved the characterisation of 

BC risk posed by the dense breast tissues for populations with low density.   

 

For the purposes of this project however, the SCC categories were ascertained to be too large 

for detecting small changes in PD.   

 

4.3.3 Cancer Research UK (CRUK) 
 

A visual assessment scale with 21 categories to help overcome some of the problems (i.e. 

coarseness) with the BIRADs and SCC density classifications was developed [296].  This scale 

consists of 21 categories ranging from 0 to 100% density in 5% increments, rounded up to the 

nearest 5%.  That is, 9% density is categorised as 10%, and 52% density is categorised as 55% 

density.  A training DVD for this method was developed by radiologist Ruth Warren to assess 

participant’s eligibility for the IBIS-II breast cancer prevention trial.    

 

The 21 category visual classification method has been validated in several studies published in 
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peer reviewed journals [296, 394]. The technique is quick to utilise.  Although the 5% 

categories would not be useful to detect small (<5%) changes in PD for this project, substantial 

(10% or greater) changes in PD might be distinguished. This technique was selected as a 

potential method for use in this project (the CMN MD and AI substudy). 

 

4.4 Side by side comparison 
 

Side by side comparisons of mammograms to visually estimate longitudinal change in MD has 

been successfully utilised [262].  This technique was considered for use in this project, however 

it was not implemented because its use might bias results from other techniques.  

4.5 Planimetry 
 

As described in 4.2, manual planimetry can be used to quantify PD on mammograms [234].  

Use of a planimeter, whilst accurate, is very time-consuming.  Because similar but faster 

computer-assisted techniques now exist, this technique was not utilised in this project.   

 

4.6 Semi-automated methods for percent density assessment 

4.6.1 Cumulus 
 

The Cumulus program [128], developed by Norman Boyd, Martin Yaffe and colleagues at the 

University of Ontario, is the most widespread, semi-automated method used to assess breast 

density [395].  It is the defacto standard for measurement of PD [395]. 

 

Cumulus users interactively outline the pectoral muscle and other areas to be excluded from the 

total breast area.  The breast edge is delineated through selection of a grey-level threshold 

and/or manually outlined.   A second grey-level threshold which best captures the dense tissue 

area/s is also selected.  The proportion of dense tissue area relative to total breast area is then 

calculated to yield PD for that mammogram.  (See below, Figure 4-1) 
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Figure 4‐1 Measurement of breast density using Cumulus  

The red areas selected by the user delineate the non‐breast area from the breast area (raster size 
6,743,585).  The area surrounded by green pixels was selected by choosing the grey‐level which best 
captures the dense area of the breast (raster size 2,013,137).  This breast is approximately 30% dense 
(2x106/6.7x106).  IBIS‐II left cranio‐caudal (LCC) View mammogram. 
 

 

Cumulus is well validated.  Measurements made by the program have been shown to be very 

reproducible for trained users, whose correlation coefficients range from 0.95 to 0.99 [182, 396, 

397].  Cumulus has been utilised worldwide as an effective tool to quantify density on 

mammograms and produces consistent results demonstrating increasing gradients of breast 

cancer risk for increasing percentages of mammographic density.   

 

However, because Cumulus is interactive (i.e. the user determines the areas to outline), 

measurements with Cumulus are subjective.  Even if 100% consistent within their own 

assessment of a set of mammograms (100% intra-observer reliability), different users of 

Cumulus can and will vary in their quantification of the density present on mammograms (inter-
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observer variability) [personal communication [398] (during training of the Candidate in the use 

of Cumulus at the University of Melbourne)].   

 

High intra-observer consistency is the most critical aspect for Cumulus use [398].  That is, as 

long as each user is consistent whilst selecting the breast and dense areas, the relative 

distributions of mammographic density measurements will be similar for each Cumulus user.  

This will result in nearly identical gradients of risk for each user’s distribution of density 

measurements, because mammograms will be classified within the same quantile of density 

even if the absolute value measured for percent density varies among assessors.   

 

To achieve the lowest variability and smallest mean difference, it is advisable to read sets of 

mammograms from a single patient in random order when assessing PD [399]. 

 

Cumulus was designed to assess mammographic density in film-screen mammograms, however 

Cumulus has successfully been utilised with digital mammograms [18, 400, 401].  Due to the 

ability of Cumulus to quantify PD precisely, this technique was selected for use in this project.   

 

4.6.2 Madena 
 

Madena is another interactive thresholding computer program, for use on Macintosh computers 

[289]. Whilst less widely used than Cumulus, Madena is freely available, and has been well-

validated [214, 229, 239, 266, 274, 290, 291, 323, 377, 402-405].  It differs somewhat from 

Cumulus, in that the user manually outlines the breast area— excluding the pectoralis muscle, 

prominent veins and artefacts— to define the total area of the breast [402]; use of a grey level 

threshold to capture the outer edge of the breast as shown in Figure 4-1 is not undertaken.  A 

grey level threshold is then selected to capture the dense tissue of the breast.  Users manually 

record density data in spread sheets, whereas Cumulus records these values automatically.   
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The operating system primarily used at the University of Newcastle and the ANZ BCTG is 

Windows.  Purchase of a separate Macintosh computer to utilise Madena precluded its use in 

this project. 

 

4.7 Automated techniques – ‘2D’ density assessment 
 

To reduce the variability inherent in subjective measurement tools, many fully automated 

techniques to measure density on conventional ‘2D’ (two-dimensional) mammograms have 

been developed [406-409].  These include some of the pattern recognition techniques mentioned 

previously, as well as programs that automatically measure PD.  One of the  

 

A recently developed, fully-automated program using the US National Institute of Health image 

assessment program, ImageJ, has been validated against the Cumulus program [410].  This 

assessment tool has successfully measured longitudinal changes in PD for women on TAM vs 

no TAM to provide further evidence that reductions in MD are associated with reductions in BC 

risk [297] .  The image manipulation techniques utilised to measure PD with the ImageJ 

program have been documented [410], but a commercially available version of the program was 

not available. 

 

A fully-automated technique to measure percent and area density on conventional 2D 

mammograms was developed in Australia via a collaboration between the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO) and researchers at the University of 

Melbourne— the AutoDensity program [411].  AutoDensity has a user-friendly interface to 

select mammograms for measurement, and is easy to use.  This measurement technique was 

selected to trial in this project.  

 

Another automated measurement technique, the LIBRA program (Laboratory for Individualized 

Breast Radiodensity Assessment) [412, 413], uses DICOM images from both pre-processing 
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and post-processed digital mammograms.  This program is suitable for use on the IBIS-II 

mammograms, as are other techniques such as STRATUS [317, 414, 415] had they been 

available at the time techniques for this project were selected in 2013. 

 

4.8 Volumetric techniques – ‘3D’ density assessment 
 

Three-dimensional measurement techniques have been developed to further quantitate the 

relationship between MD and BC risk.  Many techniques generate estimates of the volume of 

dense tissue using two-dimensional mammographic images, others generate 3-D measurements 

using volumetric imaging techniques such as MRI.  Despite strong criticism of the use of PD as 

a measurement of BC risk [416], volumetric estimates of MD have not provided consistently 

better gradients of risk compared to PD.   

 

A number of automated programs which estimate the dense tissue volume from standard (two-

dimensional) mammographic images have been developed.  Two of these automated programs 

have achieved commercial success (Volpara[417] and Qantra[418]) and are used clinically.   

 

4.8.1 Standard mammographic form (SMF) 
 

Standard mammographic form (SMF) was one of the earliest programs developed to standardise 

the appearance of film mammograms due to the variability in exposure times, types of film, etc. 

[419, 420].  The program calculates the thickness of the breast from its curvature at the margin 

of the film mammogram.  From this, an estimation of the breast volume can be calculated.  The 

density (whiteness) of the tissue at each pixel is used to estimate the amount of dense tissue 

present in the column of breast tissue present at that pixel.  The sum for each pixel is determined 

for the whole breast, which results in a volume of dense tissue.  Percent volumetric density is 

calculated as the volume of dense tissue in the breast divided by the whole volume of the breast.   
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Because SMF is it is fully automated, the measurements made by SMF are highly repeatable; an 

identical volumetric percent density is produced for each mammogram every time the program 

is run.  

 

Studies utilising SMF as well as percent mammographic density have shown risk gradients for 

breast cancer with increasing percent volumetric density, but the predictive ability of volumetric 

breast density from SMF has not been as great as for percent mammographic density [421, 422]. 

 

4.8.2 Commercial volumetric programs 
 

Two commercial programs were available in 2013 for use with digital mammography machines 

and picture archiving and communication systems (PACS): 

 Makatina’s Volpara (http://www.volparadensity.com/)) 

 Hologic’s Quantra (http://www.hologic.com/en/breast-screening/volumetric-

assessment/),  

Both programs are approved for use by the FDA (Food and Drug Administration) in the USA 

with certain digital mammography systems.  Both programs provide a fully-automated  

volumetric density estimate of the breast tissue at the time the mammography is performed. 

Both commercial programs require access to the ‘raw’, pre-processed digital mammogram 

images, which differ from the post-processed images used clinically. 

 

The number of commercially available automated programs has now increased (both 2D and 3D 

measurement techniques) as reviewed in Destoinis 2017 [317]. Most commercial applications 

focus on quantifying mammographic density, sometimes emulating the BI-RADS density 

categories, to meet the new USA reporting legislation requirements.  As yet, not many 

longitudinal studies have been undertaken using the automated measurement programs because 

they are not yet in widespread clinical use.  Automated programs are likely superior for use in 

longitudinal projects as they are not influenced by user input, and may be able to detect small 
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changes in density (e.g. such as those expected from AI treatment). Further research is needed to 

ascertain if longitudinal changes in breast density (whether due to aging, (preventive) hormonal 

treatment, or other therapy) measured with automated software are associated with changes in 

BC risk. 

 

4.8.3 Cumulus V 
 

Researchers at the University of Toronto developed Cumulus V [423].  Cumulus V (V for 

volumetric) uses a ‘phantom’ (an imaging reference composed of different thicknesses and 

densities which is imaged alongside the target tissue) on specifically calibrated mammography 

machines to quantify the volume of dense tissue in the breast.   

 

4.8.4 Magnetic Resonance Imaging (MRI)  
 

Many studies have investigated the feasibility of using magnetic resonance imaging (MRI) to 

measure breast density [150-156, 158, 424, 425].  The technique is very reliable and repeatable, 

and unlike mammography, does not involve the use of ionising radiation.  The expense of MRI 

[426] has meant large scale epidemiological MD studies using this imaging modality have not 

been undertaken.  Additionally, standard (contrast-enhanced) MRI breast imaging, such as that 

utilised in a recent breast density and hormonal exposures project [427], requires use of a 

potentially harmful contrast agent. The confinement of the body in the magnetic tube is not 

palatable to numerous people.  These issues currently limit its use as a screening tool. However 

use of non- and pre- contrast MRI techniques to measure breast density [428-430] are available; 

these provide an alternative method for measuring breast density. 

 
 

4.8.5 Ultrasound 
 

Like MRI, ultrasound does not involve the use of radiation.  Unlike MRI, ultrasound generally 

is very operator dependent, and it therefore not as consistent a modality as MRI or 
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mammography for BC screening.  Efforts are underway to reduce the amount of dependence 

upon the skill of the user through use of automated ultrasound systems, such as the 

commercially available Automated Whole Breast Ultrasound (ABUS) [425, 431-433], and a 

more experimental ring ultrasound tomography technique [434]. Most ultrasound techniques are 

quite variable, therefore ultrasound has not been widely used to assess breast density [173].  

Whole breast ultrasound tomography, which measures the velocity of sound waves through the 

breast, is highly correlated with %fibroglandular volume using non-contrast MRI [429] and 

Cumulus measured MD[435], and may prove useful as a screening tool for breast density. 

 

4.8.6 Tomosynthesis 
 

X-ray tomosynthesis is a specialised type of mammography, and is often used in conjunction 

with standard mammography systems.  It uses a slit opened at regular intervals to emit x-ray 

beams from a source that travels in an arc over the breast.  This produces approximately eight 

slices which are reconstructed into a three dimensional representation of the breast.  Volumetric 

density is estimated from the reconstructed volumetric representation of the breast [382, 436].  

Because multiple x-rays of the breast are taken from different angles, tomosynthesis diminishes 

the capacity of dense tissue to obscure tumours.  This technique may prove superior to standard 

screening mammography for women with dense breasts [437, 438].  Density estimated on 

tomosynthesis, digital mammograms and MRI is highly correlated [439]. However, breast 

density may be underestimated with digital breast tomosynthesis relative to BI-RADS (digital 

mammography) density [439, 440]. 

 

 

4.8.7 CT, PET and other techniques 
 

Other types of imaging such as computed tomography (CT), positron emission tomography 

(PET), and DXA/single(S)XA are potentially useful in the assessment of breast density [441, 

442].  PET and CT require higher levels of ionising radiation compared to mammography and 
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are also more expensive.  Therefore they are not desirable modalities for use in general BC 

screening programs.  The radiation levels for breast density DXA/SXA are low compared to 

mammography (30μ Sieverts(Sv) for single breast DXA vs 450μ Sv mammography screening 

(x4 views)[443]) and are of potential use for breast density assessment [444].  The SXA 

technique has been shown to vary by about ±2% longitudinally [445], and thus may be suitable 

for longitudinal studies where (like IBIS-II) the estimated change in MD is likely to be small.   

 

A technique called molecular breast imaging (MBI), developed at the Mayo Clinic in the USA, 

provides superior detection of cancer in dense breast tissue compared to mammography.  The 

radiation doses utilised in molecular imaging currently far exceed those of mammography, but 

continued improvements in these techniques may yield an acceptable radiation dose comparable 

to that of a mammogram [446, 447]. 

 

Other potential imaging techniques such as optical imaging [448-450], elastography [451, 452] 

and electrical impedance [453, 454] have also been utilised to measure the dense tissues of the 

breast [372]. These are not in widespread use, but this may change as the demand continues to 

increase for non-ionising methods of assessing breast density.   

 

4.8.8 Volumetric techniques in relation to the project 
 

Because mammographic images were the sole breast imaging modality available for IBIS-II 

participants, the majority of volumetric density assessment techniques were not available for use 

in this project.  Measurement of volumetric density using a research (non-commercial) version 

of the Volpara software was considered.  As described above, however, Volpara requires the 

‘raw’ (unprocessed) digital image from the mammography machine to estimate volumetric 

density.  Only film-screen and processed digital images were available at baseline for the IBIS-

II participants, hence use of Volpara was not pursued.  
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4.9 Conclusion 
 

Breast density has proven difficult to quantify reliably and repeatably [34]. Visual assessment of 

BD is widespread. Clinical use of fully automated programs that estimate the volume of BD is 

rising. PD is typically measured in research environments using semi-automated, interactive 

computer programs. All methods which require human input are subjective, and hence results 

are less repeatable and consistent than fully automated methods. Although the fully automated 

methods are very consistent, many misclassify mammograms and most do not provide gradients 

of risk as strong as interactive methods. 

 

The type of breast imaging available for IBIS-II participants, namely film and digital mammo-

grams, restricted the choice of MD measurement technique which could be utilised.  Further-

more, mammograms were collected retrospectively, and use of fully automated techniques 

which required access to raw mammography data such as Volpara could not be used.   

Visual MD assessment techniques are typically quick and easy to implement, but are hindered 

by issues of reproducibility and accuracy.  The popular BI-RADS and Boyd SCC techniques 

utilise large categories for MD, and thus were unlikely to be able to discern the small 

longitudinal changes in MD expected for AI treatment.  However the 21-category visual 

technique utilises 5% PD increments.   This technique was selected to test for reliability and 

compatibility with other techniques, since it had the capacity to detect potentially clinically 

relevant longitudinal differences in MD quickly and easily. 

 

Semi-automated techniques such as Cumulus and Madena are well established in the MD 

research community.  Cumulus was compatible with the IT infrastructure at the ANZ BCTG 

and Newcastle BreastScreen facility, and was capable of accurately measuring mammographic 

MD.  Cumulus was selected as a technique to test for reliability and accuracy in this project.   

 

A number of fully automated methods to measure MD on retrospectively collected mammo-

grams are available.  A technique utilising ImageJ has been utilised successfully with a number 
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of mammographic sets.  However this technique appeared to be difficult to implement, and was 

not commercially available. The fully automated AutoDensity program was available via a 

technology evaluation agreement with the CSIRO, hence this technique was selected to measure 

density on the CMN IBIS-II mammograms. 
 

In summary, the review of techniques for assessing MD identified three potential methods:  

visual assessment, Cumulus assessment and AutoDensity assessment.  Assessment of the 

reliability of the visual and Cumulus methods will be presented in the following Chapter. 
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5. Intra-observer and inter-method reliability 

This chapter addresses the second Aim of the thesis: to investigate intra- and inter-technique 

reliability for MD.  The chapter includes results from an analysis of intra-observer (intra-

technique) reliability for two MD measurement techniques: visual assessment and Cumulus.  

The interchangeability of visually assessed and Cumulus assessed MD are compared using an 

inter-technique agreement method. Additional comparisons are made between film 

mammograms scanned at 4.3 and 4.7 optical density, and between digital mammograms and 

film mammograms scanned at 4.7 optical density. A further comparison is made between the 

average of two MD measurements and single MD measurements. 

 

5.1  Introduction 
 

The modality used to capture and retain mammographic images has undergone a transition in 

Australia throughout the duration of the IBIS-II breast cancer prevention trial, which 

commenced accrual in Australia in June 2005.  Ongoing improvements in image acquisition, 

technique and storage are an integral part of medical imaging. John Wolfe— who first published 

the association between breast cancer risk and mammographic pattern [8]— was an expert in the 

use of the now defunct xeromammography [455], a popular competitor to film mammography 

in the 1960s. Film mammography was the worldwide standard for breast imaging from the 

1960s [456] until late last decade.  Improvements in technology led to the use of a screen in 

conjunction with film  to reduce the radiation dose to the breast in the 1970s (“film-screen” 

mammography) [455].    Like the conventional film used to capture images in still photography 

and for movies prior to the invention of digital cameras, mammographic films are developed in 

dark rooms using a series of chemical exposures.  This requires manual handling of the film 

during the various phases of image development, and increases the overall time needed to 

acquire the mammograms.   

 



Chapter 5 

117 

Film-screen mammography has been largely supplanted in the developed world by digital 

mammography.  Digital mammography, invented in the mid-1990s, has advantages over film 

due to its lower radiation dose [457], superior acquisition speed, and increased contrast and 

portability of images [456]. Randomised controlled trials have shown no overall difference 

between detection of breast cancers by digital mammography and film-screen mammography.  

Detection of lesions is improved for digital mammography in some groups, including women 

with dense breasts, and those under age 50 years [458].  Digital mammography may be less 

sensitive than film in women with the opposite characteristics (older age, fatty breasts) [459].   

 

Digitised film-screen, digital, and digitised digital mammograms printed to film (‘digital on 

film’, DoF) were utilised in this project. The digital mammograms utilised in this analysis are 

primarily computed radiography (CR) mammograms.  CR images are captured on a reusable 

phosphorous plate housed in a cassette.  The cassette is manually inserted by the radiographer 

into a separate device to be read by a laser before the image is sent to a computer.  CR cassettes 

are used in the place of film cassettes on film-screen mammography machines, thus providing 

many of the advantages of digital mammography without complete upgrade of an expensive 

device.  In contrast to CR, direct (or digital) radiography (DR) images are captured directly onto 

a plate which is an integral part of fully digital mammography machines; DR images are sent 

immediately from the plate to a computer (manual handling of cassettes does not occur).   

 

Unlike film-screen mammograms, CR and DR mammograms are subject to image post-

processing by the software of the mammography machine; this software tends to remove some 

of the dense tissue from the final (processed) image.  Post-processing algorithms vary with the 

vendor of the mammography machine and over time (e.g. software version), hence the dense 

tissues of mammograms from the same woman may vary in appearance depending upon which 

technology and type of mammography machine was utilised. 
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A. Film‐screen 
mammogram  

B. CR mammogram, 
printed to film (DoF) 

C. CR mammogram 

Figure 5‐1 Mammograms from an IBIS‐II trial participant 
A. 2008 digitised film‐screen mammogram (left panel); B. 2009 digitised CR mammogram printed to film 
(digital on film: DoF) (middle panel) C. 2010 computed radiography mammogram (right panel).  Density 
is more diffuse in the film‐screen mammogram (A) than in the digital mammograms (B, C).  The breast 
edge is more visible in the digital mammograms, especially for DoF (B).  Contrast between the fat (dark) 
and dense areas of the breast is greatest in the CR image (C).   

 

A. Film‐screen 
mammogram 

B. CR mammogram  C. DR or CR mammogram 

 

 

 

Figure 5‐2 Mammograms from an IBIS‐II trial participant 
A. 2007 digitised film‐screen mammogram (left panel); B. 2012 CR mammogram (middle panel) C. 2013 
digital mammogram, of CR or DR origin (right panel).  The different view label (LCC) for mammogram C 
indicates that the process that generated this image differs from that of the digital mammogram in 
panel B.   

A  B  C 

A  B  C 
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Film-screen mammograms for this project date from 2005 to 2008.  CR mammography started 

to replace film-screen mammography in 2008 in the lower Hunter (Newcastle) region.  Many 

CR mammograms can be positively identified by their appearance: they are readily 

distinguished from both film-screen and DR mammograms by the presence of film-screen-like 

view labels on the digital image (e.g. the LCC labels, Figure 5-1). However, it is not possible to 

tell whether some digital mammograms are of CR or DR origin solely by viewing the image, 

e.g. Figure 5-2C.   

 

Many methods to assess mammographic percent density are available, as discussed in the 

previous chapter.  This earlier chapter presented a review of the available techniques to measure 

mammographic density, and concluded that it would be worthwhile to test three different 

methods for suitability in this project.  Results from Cumulus assessed MD and visually 

assessed PD to the nearest 5% are presented in this chapter. While MD was also assessed using 

AutoDensity, the results are not presented here because they are considered confidential 

information by the CSIRO.  

 

The visual appearance of the DoF mammograms differed from the fully electronic digital 

mammograms, as did the behaviour of the Cumulus program when selecting the dense area on a 

DoF mammogram.  Film and fully electronic digital mammograms typically had indistinct grey-

level differences between the adipose and dense breast tissues, as well as a broad range of 

graduated grey-levels within the dense tissues. This meant choosing a grey-level threshold 

which best selected the area of dense tissue was very imprecise (subjective): a large range of 

grey-levels could be chosen. In contrast, the DoF mammograms had very little grey-level 

threshold differences between the background (adipose) tissues and the dense tissues, as well as 

a narrow range of grey-levels within the dense tissues.  This made it relatively easy to set a 

grey-level threshold to select the dense tissues.  However it meant that the fully electronic 

digital mammograms and the DoF were unlikely to be similar representations of the dense 
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breast tissues when assessed visually or with Cumulus, and thus were excluded from the 

analysis. 

 

The types of mammograms available for use in this project—film-screen mammograms, digital 

mammograms printed to film (i.e. copies of digital trial mammograms given to the IBIS-II 

participants to take home), and fully electronic ‘original’ digital mammograms— varied over 

time for trial participants (Figure 5-1, Figure 5-2). 

 

Due to the potential for between–method measurement variation, variability in the measurement 

method (due to the subjective component), and the likely differences between measurements 

made on film vs digital mammograms, it was considered important to look at the reliability of 

MD assessment.  Quantification of intra-observer as well as inter-observer reliability when 

utilising subjective measurement techniques is often reported in the MD literature [189, 394, 

399, 460, 461].   

 

This chapter therefore addresses Aim 2 of the thesis: Quantification of intra- and inter-technique 

measurement reliability. 

 

Several ancillary aims are also addressed in this chapter.  The first ancillary aim was to 

determine if two different acquisition techniques— namely, higher versus lower optical density 

(OD) scanning— affects MD assessment on the same mammogram.  It is unknown if percent 

density (PD) assessment differs on mammograms scanned at different OD.  

 

Researchers at the University of Toronto advised that Cumulus was compatible only with scans 

made with an x-ray digitise with at least a 4.0 OD capability.  The IBIS-II international trial 

coordination centre’s film-screen mammogram scanning protocol scanned mammograms at 12-

bits, 50µ pixel spacing at 4.3OD.  However, the Array laser scanner conjointly purchased by the 
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CMN Department of Surgical Oncology and the ANZ BCTG can scan up to 4.7OD.  Higher 

optical densities correlate to darker greys and blacks.  The dense tissues of the breast appear 

white (lower optical density) and are easily captured by even low (<4) capacity OD scanners.  

The subcutaneous fat and skin overlying the dense breast tissues appear dark (higher optical 

density) on film-screen mammograms.  Higher OD features such as the breast edge may not be 

adequately captured on the digitised image when scanning at low OD.   

 

In theory, higher OD scanning will produce a more visible breast edge on the digitised image.  

User-assessed PD might be lower for film-screen mammograms scanned at 4.7OD compared to 

4.3OD, for both Cumulus and visually-assessed PD.  This is because the more visible breast 

edge might increase the total area attributed to the breast, whilst the area of dense tissue remains 

unaffected.  [N.B: the same number of bits (i.e. 12 bits per pixel) then must capture a wider 

range of greys for 4.7OD vs 4.3OD; this could also possibly affect the assessment of the dense 

tissue.] 

 

Additionally, mammograms scanned at the highest OD setting (4.7OD) on the Array scanner are 

likely to produce images with a breast edge similar to the well–defined breast edge of digital 

mammograms.  This is because the higher OD setting should be able to distinguish the dark 

edge of the breast better than low OD settings.  The PD from IBIS-II digital mammograms tends 

to be lower than that measured from film mammograms.  Whilst the lower PD on digital 

mammograms is likely due to post-processing on the mammography machine, factors such as 

time between the film and digital mammograms, total area of the breast, and participant age 

may also influence this discrepancy.  Examination of these factors is undertaken in a second 

(acquisition technique) ancillary aim. 

 

 

 



Chapter 5 

122 

Aim 2 – Intra-observer and inter-method reliability sub-aims 
 

Aim 2 of this thesis was subdivided into separate sub-aims, according to the type of reliability to 

be tested. This resulted in division of Aim 2 into four sub-aims: intra-observer reliability, inter-

method reliability, and x2 acquisition technique reliability as follows: 

 
1.) Intra-observer reliability (Aim 2.1): To determine if repeated measurements by an 

individual on the same mammographic image using the same subjective assessment 

technique yields similar results. In other words, to determine if measurement 1 is 

similar to measurement 2 for each subjective assessment technique (Cumulus, visual).   

2.) Inter-method reliability (Aim 2.2): To determine if measurements made on the same 

mammographic image by the different assessment techniques (Cumulus and visual) are 

equivalent ways to assess mammographic density, or if systematic differences between 

the techniques exist. 

3.) Acquisition technique reliability (Aim 2.3):  Utilising measurements made by the same 

person using the same technique: 

a. Aim2.3a: To determine if MD is similar on film mammograms scanned at 

4.3OD vs 4.7OD or if there are systematic differences between measurements 

made on images scanned with these two optical density settings. 

b. Aim2.3b: To determine if measurement of MD differs between film 

mammograms scanned at 4.7OD and digital mammograms for the same 

participants 

 

5.2 Methods 
 

As described in Chapter 3, PD and DA are the typical parameters used to represent 

mammographic density: PD = DA/BA.  Hence PD is a parameter derived from a calculation 

utilising DA and BA.  PD may be estimated without formally quantifying the size of the areas 

for DA and BA (as is done for visual assessment of PD).  Alternatively, PD may be calculated if 
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DA and BA have been quantified (measured).  Computer software such as Cumulus typically 

takes this latter approach.  If DA and BA are quantified, then other derived parameters can also 

be calculated: adipose area (AA) = BA–DA; and percent adipose area (PA) = AA/BA.   

 

Because PD is universal to all common approaches of MD measurement, this chapter primarily 

addresses the reliability of PD to achieve Aim 2.   

 

To complete Aim 2 of the project, MD was measured using the three techniques selected in Aim 

1 (Chapter 4).  Digitised film and digital mammograms were assessed by the candidate (sole 

assessor) visually and rounded up to the nearest 5% PD [296].  The candidate received training 

in visual assessment using the IBIS-II Mammographic Density training DVD developed by Dr 

Ruth Warren and CRUK.  Digitised film and digital mammograms were assessed for MD by the 

candidate using the Cumulus technique [128].  The candidate received training in the use of 

Cumulus from staff at the University of Melbourne prior to assessing the mammograms used in 

this project.  AutoDensity was developed for use on left (L) CC mammograms [411]; for 

convenience, principally LCC View film and digital mammograms were selected for Aims 2.1 

and 2.2.   

 

Mammograms used for this Aim (Aim 2) were those that were obtained by the end of 2012 

(Collection 1).  (Additional mammograms were obtained for Aims 3 to 5 (Collection 2, in 

2014).) Mammograms are also referred to as images or Views throughout this thesis.  A 

mammographic episode consists of one or more Views (typically the four standard Views: 

RCC, LCC, RMLO, LMLO) taken during a single mammography session.  Although four 

standard Views usually comprise all of the images in a mammography episode, occasionally 

other Views such as the medio-lateral (ML) view or magnifications were present for digital 

mammograms.  One or more Views were sometimes missing from episodes, or not possible to 

obtain (e.g. due to unilateral mastectomy). 
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Table 5‐1 Mammogram subsets utilised in Aim 2 

Collection 1 
mammogram 
subset 

Total 
partici‐ 
pants 

Total 
mmgs 

Unique 
mmgs 

4.7 
OD 
film 
mmg 

4.3 
OD 
film 
mmg 

Digital 
mmg 
(all) 

Digital –
non 
DoF 
mmg 

DoF 
mmg 

Notes 

All of  
Collection 1 

1122  17121  13332  1681  1681  13121 
11441

11132 
1171 

Collection 1 mmgs used in Aim 2 (this 
chapter) include duplicated images 

Aims 2.1 & 2.2: Intra‐observer & inter‐technique reliability  
   Film  40  130  72 57 57 ‐‐ ‐‐ ‐‐ Film includes 30 RCC Views; digital are 

all LCC Views.    Digital (no DoF)  44  125  125 ‐‐ ‐‐ 125 125 ‐‐
Aim 2.3a: 
Film 4.3 v 4.7OD 

29  336  168  168  168  ‐‐  ‐‐  ‐‐ 
All Views utilised

All mmgs duplicated at 4.3 & 4.7OD 
Aim 2.3b: 
4.7OD v digital 

25  232  232  116  ‐‐  116  98  18 
All Views utilised.  Views matched to 

each other during comparison. 
1 Collection 1 mammogram totals, includes duplicated mammograms; 2 Cleaned data, DoF (digital printed to film), and duplicate films excluded 

 

Table 5‐2 Mammogram Selection Criteria for each Aim 

Aim  Mammogram Selection Criteria

Aims 2.1 & 2.2: 
Intra‐observer & inter‐
technique reliability 

CC Views utilised 

 
Film  

mammograms 
Available LCC mammograms (n=57) were supplemented with 15 RCC View mammograms to better match 
the number of mammograms available for fully electronic digital mammograms.   

 
Digital 

mammograms 
125 unique LCC View digital mammograms from 37 participants who had both film and digital 
mammograms were selected.   

Aim 2.3a: 
Film 4.3 v 4.7OD 

All available film mammograms with both 4.3 and 4.7 OD scans were utilised.  Hence all 4 Views (RCC, LCC, 
RMLO, LMLO) were selected. 

Aim 2.3b: 
Film v digital 

The most recent 4.7OD film mammogram was matched to the oldest digital mammogram for participants 
with 4.7OD film mammograms.  This was done to minimise longitudinal differences in MD due to time. 
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Mammographic density was measured on different subsets of mammograms from Collection 1,  

Table 5-1.  Collection 1 consisted of all available Views from more than 400 non-unique 

mammographic episodes representing 112 distinct CMN IBIS-II participants.  Non-unique  

 (duplicate) mammograms were collected for the purposes of achieving Aim 2.3 Acquisition 

technique reliability (e.g. Aim 2.3a: compare PD measured on 4.3 vs 4.7OD images of the same 

LCC mammogram). 

 

Forty–three of 57 film episodes were scanned by the candidate at both 4.3OD and 4.7OD; 14 

film episodes not duplicated both at 4.3OD and 4.7OD were collected by the ANZ BCTG.  All 

available fully electronic LCC digital mammograms for the 37 participants with both film and 

digital mammograms were selected for the digital mammogram set; the DoF were excluded 

because selection of the dense area in the Cumulus program differed for DoF vs fully electronic 

digital mammograms.  

 

The mammogram selection criteria for each Aim in this chapter are shown in Table 5-2. Review 

of Collection 1 revealed that 57 unique film LCC mammograms were available. All available 

(fully electronic) LCC digital mammograms for the 37 participants with both film and digital 

mammograms were selected for the digital mammogram set.   

 

5.2.1 Visual and Cumulus MD measurement 
 

For Aims 2.1, 2.2 and 2.4, the 72 film-screen mammograms were assessed visually and with 

Cumulus on 9 July 2014 (measurement 1 film) and 12 August 2014 (measurement 2 film).  The 

125 digital mammograms were assessed using visual and Cumulus methods on 25 September 

2014 (measurement 1 digital) and 6 November 2014 (measurement 2 digital).  Each assessment 

was preceded by ‘recalibration’ with the visual assessment technique by retraining on the IBIS-

II Mammographic Density training DVD by Dr Ruth Warren/Cancer Research UK (CRUK).  

The film and digital mammograms were batch read within Cumulus. The 72 film mammograms 
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were read as one batch and the 125 digital mammograms were read separately in another batch.  

The assessor was blinded to the percentage calculated by Cumulus during batch reads.  The 

mammograms were first read visually (within the Cumulus program), and subsequently 

measured using the Cumulus program.   

 

Mammograms collected during Collection 1 were assessed using Cumulus for Aim 2.3 (and 

Aims 3 to 5) in April 2013.  The images were assessed in 16 batches of 100 to 150 

mammograms per batch.  Batches were composed of all available mammograms (film-screen 

and digital) for several different participants.  Mammograms from each participant were read as 

a group (sequentially), but in random order: the RCC, LCC, RMLO and LMLO Views for each 

participant from different episodes were intermixed with each other.  Each batch was read 

during a single sitting (e.g. during 2 consecutive hours on a single day).  Thus the 4.3OD and 

4.7OD mammograms for each participant were assessed for density in Cumulus within a short 

time of each other.  Visually assessed PD for Aim 2.3 was batch-read using a slightly different 

paradigm than described for Aims 2.1 and 2.2, because randomly ordered Cumulus batches are 

time-consuming to prepare.  A Bland-Altman plot (not shown) was generated to confirm a 

significant (>5%) bias did not exist between the two different visual assessment methods. 

 

Method for Aim 2.1 (Intra-observer reliability) 

To achieve Aim 2.1— intra-observer (intra-method) reliability for the two subjective 

measurement techniques (Cumulus vs visual)— two sets of MD measurements were made on 

72 cranial-caudal (CC) film-screen mammograms and 125 CC digital mammograms using each 

measurement technique.     

 

Method for Aim 2.2 (Inter-method reliability for MD) 

To achieve Aim 2.2 for PD, the set of repeated measurements (measurement 1 and measurement 

2) made on 72 film and 125 digital CC View mammograms in Aim 2.1 were used to compare 

PD for the Cumulus and visual measurement techniques.  
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Method for Aim 2.3 (Acquisition reliability)  

To achieve Aim 2.3a— acquisition technique reliability for 4.3OD vs 4.7OD film 

mammograms— 168 film mmgs (i.e. all Views: RCC, LCC, RMLO, LMLO) digitised at both 

4.3OD and 4.7 OD were compared for differences in MD measured using the Cumulus and 

visual techniques.  All mammographic Views were utilised because there is no restriction on 

type of View for the visual and Cumulus techniques, and to increase the sample size used in the 

comparison. 

 

To achieve Aim 2.3b —Acquisition reliability 4.7OD vs digital— the most recent 4.7OD film 

mammograms for each participant (n=29) were paired with the oldest fully electronic digital or 

DoF mammogram for that participant (i.e. the smallest time between the film and digital 

episodes was selected).  Views were paired (e.g. the RCC view of the 4.7OD film was paired 

with the RCC view of the digital mammogram, the RMLO views of the 4.7OD and digital 

mammograms were paired, etc.). Because PD measured on DoF mammograms differs from that 

of original (fully electronic) digital mammograms, separate comparisons are made for the 18 

DoF and 98 4.7OD film mammograms for which a fully electronic (original) digital 

mammogram was available. The average difference in PD and duration between the film and 

original digital mammograms is tabulated for the 18 DoF and 98 fully electronic digital pairs of 

mammograms, and also tabulated by time between each fully electronic digital pair (~1, 2 and 3 

years difference).   

 

5.3 Statistical Methods 
 

Most analyses in this Chapter contain multiple mammograms from each participant.  The effects 

of measurement error and the differences between the measurement techniques were assumed to 

be far greater on PD measurement than the influence of the similarities from multiple 

mammograms from participants.  Additionally, longitudinal sets of mammograms inherently 
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contain repeated measurements for individuals, hence utilising mammograms from different 

episodes but from the same participant for this Aim reflected the nature of the data for the 

Primary Aim of this thesis. 

 

The Bland Altman method and Intra-class correlations (ICCs) are the core methodologies used 

to examine repeatability and reliability of the selected MD measurement techniques.  These 

methods are described in the next two sections. 

 

 

5.3.1 The Bland Altman reliability method 
 

The Bland Altman method is comprised of graphical and quantitative techniques to assess how 

well two measurements agree [462].  The Bland Altman “Statistical Method for Assessing 

Agreement Between Two Methods of Clinical Measurement” was listed as #29 of the most 

highly cited papers in 2014 [463], and thus is a well-established, popular procedure for 

assessing agreement among two methods.   

 

Use of the Correlation Coefficient ‘r’ (or rho: ‘ρ’) when comparing two methods for agreement 

is misleading [462]. Two methods may be highly correlated (linearly related), but because the 

absolute values of the measurements may differ they may not agree very well.  If two methods 

do not agree their measurements cannot be simply interchanged with each other.  Many 

different methods exist for measuring MD.  Some are more time consuming to perform than 

others, and not all are likely to agree. It was necessary to evaluate if the methods selected for 

use in this project could be readily interchanged with each other. 

 

The Bland Altman method utilises graphs and simple calculations to assess the agreement 

between two methods.  This same procedure can be used to measure agreement of repeated 

measurements of a single technique, e.g. to calculate how much variability exists when 

repeating the same measurement technique on same mammograms.  A Bland Altman plot is a 
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scatter plot which graphs the difference between the two measurements on the y-axis and the 

average of the two measurements on the x-axis.  Two measurements that agree should have a 

very small average difference (bias) between the two measurements, and the variability of the 

differences around the bias should likewise be small (e.g. the variability should not be clinically 

significant).  The variability of the difference between each pair of measurements is plotted as a 

line two standard deviations (±2SD) from the bias, and the values ±2SD from the bias are called 

the limits of agreement (LOA) for the two measurements.  If the LOA for two different 

techniques is within (clinically) acceptable limits, this indicates that the two methods may be 

used interchangeably.   

 

Ideally, the scatter of the measurement errors (the difference in the two measurements) should 

be symmetrically and randomly scattered around the bias of the measurements.  This shows that 

the errors are normally distributed, and that the measurement error is the similar for the range of 

values tested.  However, if the scatter of the errors is funnel shaped, this indicates that the 

measurement error is related to the size of the measurement.  This problem typically occurs 

when the measurement error increases as the size of the measurement increases, which implies 

that the LOA is smaller for smaller measurements than for larger measurements.   

 

5.3.2 The ICC method 
 

ICCs from the repeated measurements performed for Aim 2.1 were calculated in keeping with 

the MD literature.  ICCs “were devised to deal with the relationship between variables within 

classes” [464].  A class describes a set of closely related items; a typical example is identical 

twins.   Identical twins can be assigned into two groups randomly.  Differences in random 

assignment into two groups will cause arbitrary (non-systematic) variation in the correlation 

between the two groups of twins.   

 

The ICC is the average correlation across all possible orderings of pairs into different groups.   

An ICC can be calculated for repeated measurements using the same technique because the only 
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difference between the measurements is the random measurement error inherent in the 

technique.  When an ICC is calculated for repeated measurements, the correlation is “essentially 

a ratio of the variability between the subjects (being measured) to the total variability” [464].  

 

However, ICCs are not suitable for assessing agreement between different measurement 

techniques because each technique may represent a different class of measurement.  If 

measurements from different techniques are not of the same class they are not ‘within’ the same 

class; thus they are not suitable for the ICC: a within (‘intra’) class correlation. Unlike twins, 

who can be randomly assigned into either of two groups, measurements made with techniques 

cannot be randomly assigned into two groups— all measurements from one technique have to 

be assigned into one group, and measurements from the other must be assigned to the second 

group.  There is a non-random order to group assignment for the two techniques; they are not 

exchangeable dyads.  Such measurements cannot be interchanged because they are of different 

classes, and therefore should not be compared with an ICC.   

 

In general, a correlation measures “the strength of a relation between two variables, not the 

agreement between them” [462].  Perfect correlation will exist between two measurements 

which line up along any straight line, whilst perfect agreement only occurs if the straight line 

has a slope of 1.  A change in scale will not affect correlation, but this does affect agreement.  

Correlation will be greater for samples with a wider range than for samples from a smaller 

range.  Highly correlated measurements may not agree very well, and the reverse is also 

possible [464]. 

 

The ICCs utilised in this chapter modelled absolute agreement between individual 

measurements using two-way random effects:  the variability for both the rater (observer) and 

target (mammograms) were included as (two) random effects in the model.  This virtual 

construct of two-way random effects allows the both the observer and the mammograms which 

were measured to theoretically have been selected randomly from a pool of similar observers 
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and similar (high risk, IBIS-II participant-like) mammograms.  Use of these random effects 

during statistical modelling of the ICCs permits the result of the ICCs to be generalised, and 

viewed as a result which arose from a population of similar raters and mammograms.   

 

The interpretation of the ICC would differ if the observer and/or mammograms were viewed as 

a fixed population which encompassed the entire population/s of interest.  The observer and/or 

mammograms would then be treated as fixed effects.  The interpretation of the ICC is not 

generalisable to a population of similar raters and/or mammograms, but instead only describes 

the results for a particular observer or set of observers and set of (IBIS-II) participants and their 

mammograms. 

 

For consistency with the MD literature, correlation coefficients for the repeated measurements 

of the same technique were also calculated.  Correlation coefficients were also generated for the 

inter-technique analyses, for comparison with the Bland Altman method outcomes. 

 

5.3.3 Statistical methods for each Aim 
 

5.3.3.1  Intra-observer reliability (Aim 2.1) (intra-technique reliability): 

 Descriptive statistics for each measurement technique were undertaken.  Box plots 

were created for measurement 1 and measurement 2 for PD measured from 72 film 

and 125 fully electronic digital mammograms. Measures of central tendency 

(median, quartile 1 (Q1) and quartile 3 (Q3)) for the measurements from each 

technique were tabulated.   

 Bland-Altman plots for Cumulus and visually assessed PD were created.  The limits 

of agreement were expected to be within ±10% absolute percent density (PD) of the 

average difference (bias) between each pair of measurements (measurement 1, 

measurement 2 ) for each mammographic image, for each technique 
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 Bland-Altman statistics and Intraclass Correlation Coefficients (ICCs) were 

calculated for measurement 1 and measurement 2 for each technique for each set of 

film and digital mammograms for PD, DA, BA and AA.   

 

 ICCs  and Bland Altman parameters for subsets of these mammograms were also 

calculated (sensitivity analyses), described as follows: 

5.3.3.1.1  Sensitivity analyses for the Aim 2.1 ICC comparisons 
 

Some participants with film mammograms did not have matching digital mammograms. more 

closely match the numbers of mammograms within each participant in the data set, a second set 

of ICCs and Bland Altman parameters for a subset of 53 LCC mammograms, one per 

participant for each Type (film, digital) were calculated.   

5.3.3.2   Inter-method reliability (Aim 2.2) 

Comparison of the repeated measurements of each technique (inter-technique reliability) 

 Bland Altman plots of the repeated measurements of each technique were 

superimposed for PD. 

5.3.3.3  Acquisition technique reliability (Aim 2.3):   

 Aim 2.3a (4.3OD vs 4.7OD): Bland Altman plots of the repeated PD 

measurements on film mammograms scanned at 4.3OD and 4.7OD were 

created for each measurement technique (Aim 2.3a).  A variance ratio test was 

undertaken to compare the variability of PD assessed visually on 4.3OD 

mammograms with the other OD and assessment technique combinations. 

 

 Aim 2.3b (4.7OD vs digital): The mean, standard deviation, and median 

difference for PD were tabulated as well as the number of follow ups and years 

between the most recent 4.7OD film and oldest digital mammograms.  Separate 

tables were made for fully electronic and DoF mammograms. Additional tables 

were created for mammograms 1 (<1.5years), 2 (1.5 to <2.5) and 3 (2.5 to <3.5) 
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years apart (original fully electronic mammograms only). The median 

difference in PD for all paired (within-table) comparisons was tested using a 

paired signed rank test. Median PD between the subgroups of mammograms 1, 

2 and 3 years apart was tested using a median test for unmatched data and a 

nonparametric trend test. Age at randomisation for participants in the 1, 2, and 3 

year groups were tested for equality using a multivariate test for means.	

	

5.4  Results 

5.4.1 Aim 2.1 Intra-Technique reliability  
 

The PD distributions of Cumulus measurement 1 and measurement 2 for film mammograms are 

similar (Figure 5-3). The Visual PD distributions of measurement 1 and measurement 2 are also 

similar, but differ from the Cumulus PD distributions. Cumulus assessed PD has a lower median 

(~26%; Quartile 1 to Quartile 3 (Q1-Q3) 14 to 36%) compared to Visually assessed PD (~40%; 

(Q1-Q3) 15 to ~55% ).   

 
PD, 72 film‐screen mammograms
Distribution median and IQR 

Median  Q1 to Q3

Cumulus  
Measurement 1  26.4  14 to 37
Measurement 2  26.4  13 to 37
Visual  
Measurement 1  43  15 to 55
Measurement 2  38  15 to 50

Measurement 1 and Measurement 2 are PD 
estimates made on the same set of 
mammograms but at different times (at 
least 30 days apart) by a single reader 

Figure 5‐3 Distributions of Percent Density for 72 film screen mammograms 

 

 

The distributions for Cumulus measurement 1 and measurement 2 for digital mammograms are 

similar as shown in Figure 5-4, but have less overlap than their film-screen counterparts in 

Figure 5-3.  The distributions for measurement 1 and measurement 2 for Visually assessed 

density are higher and broader than Cumulus assessed PD. Median PD for Cumulus assessed 
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density is ~20% (Q1-Q3 ~13 to 37%), whilst median PD for visually assessed density is ~32% 

(Q1-Q3 ~20 to 50%).  The two sets of visually assessed PD measurements are less similar than 

their Cumulus assessed counterparts, and also less similar than their visually assessed film-

screen counterparts.  

 

PD, 125 digital mammograms 
Distribution median and IQR 

Median  Q1 to Q3 

Cumulus  
Measurement 1 18.9  14 to 37 
Measurement 2 20.7  13 to 37 
Visual  
Measurement 1 40 25 to 55 
Measurement 2 25 15 to 40 

Measurement 1 and Measurement 2 are 
PD estimates made on the same set of 
mammograms but at different times (at 
least 30 days apart) by a single reader 

Figure 5‐4 Distributions of Percent Density for 125 digital mammograms 

 
 
 

Within-observer (intra-technique) reliability for visually assessed and Cumulus assessed PD 

was examined using Bland Altman plots, Figure 5-5 to Figure 5-8.  Film and digital 

mammogram were examined separately due to the different distributions of these Types of 

mammograms.   The Bland Altman parameters for these comparisons are tabulated in Table 5-3.   

 

Variability was higher for digital mammogram assessments than for film mammogram 

assessments; Cumulus assessments were less variable than visual assessments. The limits of 

agreement (LOA) were ± 13%, Visual PD and ± 8%, Cumulus PD for film-screen 

mammograms.  The limits of agreement were ± 29% Visual PD and ± 10% Cumulus PD for 

digital mammograms.  Bias (mean difference) was <2.5% for measurement 1 and measurement 

2 measurements for film-screen mammograms (visual and Cumulus assessed) and for Cumulus 

assessed digital mammograms.  However intra-technique bias was large for visually assessed 

digital mammograms: nearly 12%.   	
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 Film mammogram intra-technique Bland Altman plots 

 
Figure 5‐5 Bland‐Altman plot, 72 film‐screen mmgs, Visually assessed PD 
Measurement 1 and Measurement 2 are PD estimates made on the same set of mammograms but at 

different times (at least 30 days apart) by a single reader 

 

 
Figure 5‐6 Bland Altman plot, 72 film mammograms, Cumulus assessed PD 
Measurement 1 and Measurement 2 are PD estimates made on the same set of mammograms but at 

different times (at least 30 days apart) by a single reader 
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Digital mammogram intra-technique Bland Altman plots 

 
Figure 5‐7 Bland‐Altman plot, 125 digital mammograms, Visually assessed PD 
Please note larger Y‐axis scale (± 60) compared to other Bland Altman graphs (±30).  Measurement 1 
and Measurement 2 are PD estimates made on the same set of mammograms but at different times (at 
least 30 days apart) by a single reader 

 

 
Figure 5‐8 Bland‐Altman plot, 125 digital mmgs, Cumulus assessed PD 
Measurement 1 and Measurement 2 are PD estimates made on the same set of mammograms but at 

different times (at least 30 days apart) by a single reader 
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5.4.2  ICCs, film and digital mammograms 
 

ICCs for each technique and mammogram Type were calculated, Table 5-3; ICCs for the 

subgroups of film and digital mammograms described in the methods section of the chapter are 

also included in the tables.  

 

Because PD only is measured when visually assessing mammograms, an ICC for only PD can 

be calculated with this measurement technique.  PD, dense area (DA) and BA are all quantified 

during Cumulus measurement, and thus ICCs for each of these MD parameters were calculated.  

Additional ICCs for subsets of mammograms, as described in 5.3.3.1.1, are tabulated.  Bland 

Altman plot parameters (bias (95% CI), LOA) were tabulated for all ICC comparisons, Table 

5-3. 

 

Intra-technique correlation was generally high for the 72 film mammogram and 125 digital 

mammogram comparisons for all MD phenotypes (PD, DA, AA) and BA. The results for PD 

were similar to those for DA and AA: for the 72 film mammograms, visual PD ICC was 0.95 

(95%CI 0.92 to 0.97) and Cumulus PD ICC was 0.97 (95% CI 0.96 to 0.98). Intra-technique 

was less highly correlated for the 125 digital mammograms: visual PD ICC was 0.64 (95%CI 

0.21 to 0.81), and Cumulus PD ICC was 0.94 (95%CI 0.91 to 0.96).  Restriction of the ICC 

comparison for film to 53 unique mammograms only did not change the ICCs substantially, 

Table 5-3; a slight improvement of 0.01 was seen for both the visual and Cumulus techniques.   

 

 

Similarly as for BA, DA and AA, restriction of the 72 film mammograms to 53 unique 

mammograms did not markedly affect the Bland Altman parameters for PD, Table 5-3.  The 

bias decreased by a slight 0.2% for visual PD, and was unchanged for Cumulus PD; the LOA 

increased for Visual PD, but decreased for Cumulus PD.  As for the ICC comparisons for the 

different digital mammogram sets, the Bland Altman parameters for PD, BA, DA and AA for 

the different digital mammograms changed very little (≤2%).
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Table 5‐3 Median (Q1 to Q3), Bland Altman parameters and ICCs: Film and Digital mmgs, Visual and Cumulus techniques (PD BA DA AA) 

ICCs, film and digital mammograms, Cumulus and Visual, Measurement1 vs Measurement2   
Type of Comparison  Bland Altman parameters ICC parameters

  N  Measuremen
t technique

Median (Q1 to 
Q3)1

Bias (95% 
CI)

Lower LOA  Upper LOA  ICC  95% CI  F test3  Prob > F 

Film‐screen mammograms  (72 mammograms)   
  72  Visual PD   42.5 (15 to  2.2 (0.6 to 3.7) ‐11.4 15.7 0.95 0.92 to 0.97 45.3 <0.001
  72  Cumulus PD   26.4 (14 to  0.6 (‐0.3 to  ‐7.2  8.5 0.97 0.96 to 0.98 84 <0.001
  72  Cumulus  6.3 (5.0 to  ‐0.0016 ‐0.19  0.19 0.9996 0.9993 to  4394 <0.001
  72  Cumulus  1.6 (0.8 to  0.071 ‐0.51 0.65 0.97 0.96 to 0.98 78 <0.001
  72  Cumulus  4.3 (3.4 to  ‐0.073 ‐0.68 0.54 0.996 0.993 to  474 <0.001

Film‐screen mammogram – matched 1:1 with digital mmgs within‐participant (53 mammograms)  
  53  Visual PD   35 (15 to  2.0 (‐0.1 to  ‐13.1 17.1 0.95 0.91 to 0.97 39 <0.001
  53  Cumulus PD  25.2 (10 to  0.6 (‐0.4 to  ‐6.2 7.3 0.98 0.97 to 0.99 117 <0.001
  53  Cumulus  6.3 (5.3 to  ‐0.000041 ‐0.22 0.22 0.9995 0.9991 to  3771 <0.001
  53  Cumulus  1.5 (0.8 to  0.077 ‐0.53 0.68 0.97 0.95 to 0.98 68 <0.001
  53  Cumulus  4.6 (3.8 to  ‐0.077 ‐0.81 0.56 0.996 0.993 to  515 <0.001

Digital mammograms (125 mammograms)   
  125  Visual PD   40 (25 to  11.6 (9.1 to  ‐17 40 0.64 0.21 to 0.81 6.82 <0.001
  125  Cumulus PD  17.9 (11 to  ‐1.9 (‐2.8 to ‐ ‐11.7 7.9 0.94 0.91 to 0.96 39.17 <0.001
  125  Cumulus  7.2 (6.2 to  ‐0.01 ‐0.15 0.13 0.99976 0.9997 to  8412 <0.001
  125  Cumulus  1.3 (0.8 to  ‐0.13 ‐0.91 0.64 0.94 0.90 to 0.96 34.53 <0.001
  125  Cumulus  5.9 (4.5 to  0.12 ‐0.68 0.93 0.992 0.987 to  261 <0.001

Digital mammograms – matched 1:1 with film mmgs within‐participant (53 mammograms)  
  53  Visual PD   40 (20 to  9.6 (5.5 to  ‐20 39 0.65 0.32 to 0.82 6.3 <0.001
  53  Cumulus PD  15.8 (10 to  ‐1.6 (2.8 to  ‐10.4 7.2 0.95 0.91 to 0.97 45 <0.001
  53  Cumulus  6.9 (5.8 to  ‐0.025 ‐0.19 0.14 0.9997 0.9995 to  7063 <0.001
  53  Cumulus  1.2 (0.7 to  ‐0.11 ‐0.74 0.51 0.95 0.91 to 0.97 42 <0.001
  53  Cumulus  5.6 (4.4 to  0.088 ‐0.56 0.74 0.996 0.992 to  483 <0.001

ICCs model Two‐way random effects, absolute agreement, for individual measurements. 

Measurement 1 and Measurement 2 are MD estimates made on the same set of mammograms but at different times (at least 30 days apart) by a single reader 
1 Data from Measurement  1 used to calculate the Median and Quartiles 
2 Area is presented as (raw) raster size from the Cumulus program x106; 95% CI not presented for bias due to space restrictions in table 
3 The F test compares the ratio of two variances, to ascertain if the variances are significantly different
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5.4.3 Aim 2.2 PD Inter-Technique reliability 
 

Bland Altman plots were prepared for the inter-technique comparison of repeated measurements 

(measurement 1, measurement 2) for the Cumulus vs Visual techniques.  Separate Bland 

Altman plots were prepared for film-screen and digital mammograms for PD, Figure 5-9 and 

Figure 5-10.   

 

 Film-screen mammogram inter-technique reliability 

 
Figure 5‐9 Superimposed Bland‐Altman plots of Cumulus vs Visual measurements, 72 film mmgs 
Measurement 1 and Measurement 2 are PD estimates made on the same set of mammograms but at 
different times (at least 30 days apart) by a single reader 
 

The bias between each set of measurements in Figure 5-9 is –12% PD.  The limits of agreement 

are approximately ± 17%.  The measurements are correlated however: Pitman’s test indicates a 

significant relationship of r = ~0.6.  This is evident visually by the downward slope of the plot 

with increasing average PD.  Hence the limits of agreement are likely overestimated.  Since a 

clinically relevant bias of approximately –12 exists, the techniques are not interchangeable.  

Because of this bias, further analysis was not pursued to more closely ascertain the limits of 

agreement.  
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 Digital mammogram inter-technique reliability 

 
Figure 5‐10 Superimposed Bland‐Altman plots of Cumulus vs Visual measurements, 125 digital mmgs 
Measurement 1 and Measurement 2 are PD estimates made on the same set of mammograms but at 
different times (at least 30 days apart) by a single reader 
 

The inter-technique Bland Altman plot for digital mammograms (Figure 5-10) resembles the 

inter-technique Bland Altman plot for film mammograms (Figure 5-9), except the bias and LOA 

are larger.  Pitman’s test of correlation is still significant (p<0.001) although correlation is lower 

(~ –0.4) than for film (~ –0.6).   

	

5.4.4  Aim 2.3a PD comparison, film mmgs scanned at 4.3OD vs 4.7OD 
 

PD from film-screen mammograms scanned at 4.3OD (optical density) and 4.7OD were 

compared, using the visual and Cumulus assessment techniques.  The Bland Altman plots 

(Figure 5-11 and Figure 5-12) show there is very little difference (<1%) between repeated visual 

and Cumulus measurements made on 4.3 vs 4.7OD film mammograms.  The limits of 

agreement (LOA) are similar (± 9 to 10%) for the visual and Cumulus assessed plots; these 

LOA are similar to the LOA for film mammograms analysed earlier in this chapter (section 
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5.4.1). The increase in variability with increasing PD seen for Cumulus assessed PD is not 

apparent for visually assessed PD. 

 
Figure 5‐11 Bland Altman plot, visually assessed PD, film mammograms scanned at 4.3 and 4.7OD 

 

 
Figure 5‐12 Bland Altman plot, Cumulus PD for film mammograms scanned at 4.3 and 4.7OD 

   

Mean difference 0.92% (95%CI 0.2 to 1.6%)

Limits of agreement -8.5% to 10.3% (± 9.5%)

Pitman's Test of difference in variance, r = 0.124, n = 168, p = 0.108

-3
0

-2
0

-1
0

0
1

0
2

0
3

0

D
iff

e
re

n
ce

 in
 V

is
ua

l P
D

 (
%

),
 4

.3
O

D
 -

 4
.7

O
D

0 10 20 30 40 50 60 70 80 90 100

Average Visual PD (%), 4.3OD and 4.7OD measurements

168 pairs of digitised film-screen mammograms
Visual PD comparison of films scanned at 4.3 & 4.7OD

Mean difference 0.46% (95%CI -0.2 to 1.1%)

Limits of agreement -8.4% to 9.3% (± 8.8%)

Pitman's Test of difference in variance, r = 0.012, n = 168, p = 0.874

-3
0

-2
0

-1
0

0
1

0
2

0
3

0

D
iff

e
re

n
ce

 in
 C

um
u

lu
s 

P
D

 (
%

),
 4

.3
O

D
 -

 4
.7

O
D

0 10 20 30 40 50 60 70 80 90 100

Average Cumulus PD (%), 4.3OD and 4.7OD measurements

168 pairs of digitised film-screen mammograms
Cumulus PD comparison for films scanned at 4.3 & 4.7OD



Chapter 5 

142 

The standard deviation (SD) of visually assessed PD from mammograms scanned at 4.3OD was 

smaller (21.8) than that for the same mammograms scanned at 4.7OD (35.5), Table 5-4.  

However, these SD were not significantly different (p = 0.72, variance ratio test).  The SD for 

the 4.3OD mammograms assessed visually (21.8) was greater than both SDs for 4.3OD (15.7) 

and 4.7OD (18.6) mammograms assessed with Cumulus. This SD of 21.8 was statistically 

significantly different from both of the Cumulus assessed SD (p<0.0001, variance ratio test).   

Table 5‐4 Variance ratio tests, 4.3OD and 4.7OD visual PD, 4.3OD and 4.7OD Cumulus PD 

Measurement Type  Mean 
Standard 
Deviation 

P‐value
(vs 4.3OD visual PD) 

4.3OD Visual PD  39.7  21.8 ‐‐‐
4.7OD Visual PD  38.8  35.5 0.72
4.3OD Cumulus PD  21.4  15.7 <0.0001
4.7OD Cumulus PD  20.9  18.6 <0.0001

 
 
 

5.4.5  Aim 2.3b PD comparison, film 4.7OD vs digital mammograms 
 

The average difference in PD and duration between the film and original digital mammograms 

is tabulated for all 98 pairs of mammograms (Table 5-5), and also tabulated by time between 

each pair (1, 2 and 3 years) in Table 5-6 to Table 5-8.  A separate comparison was made for the 

18 pairs of 4.7OD film and DoF mammograms due to the differences in PD for DoF 

mammograms (Table 5-9). All mammographic Views were utilised, hence the number of 

participants is approximately one-quarter the number of mammograms in the analysis. 

 

On average, the difference in PD between the most recent 4.7OD film and oldest digital 

mammograms was about 8% (SD 8) for all 98 pairs of 4.7OD film and fully electronic digital 

mammograms, Table 5-5.  The median PD difference between the 98 pairs is 5.9%, which is 

statistically significant (p<0.001, Wilcoxon matched-pairs signed-rank test).  The mean 

difference in time between the film and digital mammograms was 2 follow ups, equating to 

about 2.3 years.   
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The PD and time differences between 4.7OD film and digital mammogram which differ by one 

(<1.5 years), two (1.5 to <2.5 years) and three (2.5 to 3.5 years) years are listed below 

 

Table 5‐5 PD comparison of paired 4.7OD film and closest digital mammograms, 98 pairs of mmgs 

Digitised 4.7OD film‐screen mammograms vs fully electronic digital mammograms 

   Average age at randomisation 58.6 years (5.8 std), 25 participants
Metric  Mean Std dev Median  N
Cumulus PD ‐ 4.7OD (film‐screen mmgs) ‐ % 21.6 17.2 20.5  98
Follow up number (4.7OD)  1.5 0.67 1  98
Cumulus PD – Digital ‐ %  13.9 14.7 12.1  98
Follow up number (digital)  3.6 0.97 4  98
Years between 4.7OD and Digital mmgs (year) 2.3  0.77  2.1  98
# Follow‐ups between 4.7OD & Digital 2.08 0.81 2  98
Difference between 4.7 and digital PD ‐ % 7.7 7.6 5.9  98

p<0.0001, Wilcoxon matched‐pairs signed‐rank test, for the comparison PD_4.7 = PD digital 

 

Table 5‐6 PD and time differences for ~1 year difference (4.7OD film vs digital mammograms) 

Metric  Mean Std dev Median  N

Cumulus PD ‐ 4.7OD   35.9 23.7 26.3  20
Follow up number (4.7OD)  1.8 1.0 1  20
Cumulus PD ‐ Digital  28.0 26.1 16.0  20
Follow up number (digital)  2.8 1.0 2  20
Years between 4.7OD and Digital mmgs 1.17 0.09 1.1  20
#Follow‐ups between 4.7OD & Digital 1 0 1  20
Difference, 4.7 and digital PD 8.0 5.8 8.0  20

Average age at randomisation 61.8 years (3.6 std), 5 participants 
 
 
Table 5‐7 PD and time differences for ~2 year difference (4.7OD film vs digital mammograms) 

Metric  Mean Std dev Median  N

Cumulus PD ‐ 4.7OD   17.7 13.0 14.5  42
Follow up number (4.7OD)  1.4 0.6 1  42
Cumulus PD ‐ Digital  9.6 5.2 9.7  42
Follow up number (digital)  3.4 0.6 3  42
Years between 4.7OD and Digital mmgs 2.1 0.16 2  42
#Follow‐ups between 4.7OD & Digital 2 0 2  42
Difference, 4.7 and digital PD 8.0 8.7 6.1  42

Average age at randomisation 57.3 years (6.1 std), 11 participants 

 

 

Table 5‐8 PD and time differences for ~3 year difference (4.7OD film vs digital mammograms) 

Metric  Mean Std dev Median  N

Cumulus PD ‐ 4.7OD   18.9 13.5 21.4  32
Follow up number (4.7OD)  1.5 0.51 1.5  32
Cumulus PD ‐ Digital  11.6 7.3 13.3  32
Follow up number (digital)  4.3 0.84 4.5  32
Years between 4.7OD and Digital mmgs 3.1 0.13 3.01  32
#Follow‐ups between 4.7OD & Digital 2.75 0.84 3  32
Difference, 4.7 and digital PD 7.3 7.6 4.2  32

Average age at randomisation 59.2 years (6.8 std), 8 participants 
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(Table 5-6, Table 5-7, and Table 5-8).  Four pairs of mammograms which were more than 3.5 

years apart are not tabulated.  Because the age of the participants may have an inverse 

relationship with the decline in PD over time [189], the average age at randomisation for the 

participants listed in each table is also provided for reference. 

 

The median PD difference for follow up differences of 1, 2 and 3 were statistically different 

within each group: difference of 1 year, median PD difference 8.0%; differences of 2 years, 

median PD difference 6.1%; difference of 3 years, median PD difference 4.2% (p<0.001 for all 

comparisons, Wilcoxon matched-pairs signed-rank tests).  However, a statistically significant 

difference in median PD (4.7OD–digital PD) was not found between the groups; i.e. no  

difference was found between the 1, 2 and 3 years group PD medians of 8%, 6.1%, and 4.2% 

when they were compared to each other (nonparametric trend test, p>0.35).  Although the 

median difference in PD appears to decrease with increasing time between the 4.7OD film and 

digital mammogram pairs (8% to 6.1% to 4.2%), this trend is not statistically significant 

(p=0.48, nonparametric trend test).  The mean age at randomisation for participants in the three 

subgroups were not statistically different (p=0.39, multivariate means test). 

 

Table 5-9 lists the PD and time differences for 18 participants who had a pair of 4.7OD film and 

DoF mammogram.  The median differences of 5.0% PD was statistically significant (p<0.02, 

Wilcoxon matched-pairs signed-rank test) and slightly lower than the median PD difference for 

fully electronic original digital mammograms (5.9%). 

 
Table 5‐9 Digitised 4.7OD Film vs Digital printed to Film (DoF) Mammograms 

Metric  Mean Std dev Median N 

Cumulus PD ‐ 4.7OD   21.4 10.8 23.8 18 
Follow up number (4.7OD)  1.2 0.43 1 18 
Cumulus PD – Digital on Film (DoF)  16.9 7.3 17.21 18 
Follow up number (DoF)  2.2 0.43 2 18 
Years between 4.7OD and DoF mmgs  1.0 0.08 1.0 18 
#Follow‐ups between 4.7OD & DoF  1 0 1 18 
Difference between 4.7 and digital PD  4.5 6.4 5.0 18 

Average age at randomisation 61.7 years (5.0 std), 5 participants 
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5.5  Discussion 
 

This analysis showed that repeated PD measurements utilising either the visual or Cumulus 

methods varied on average by an amount equal to or greater to the smallest change in PD (10%) 

associated with a reduction in BC risk [17].  These techniques are likely difficult to utilise for 

longitudinal measurements where the expected change over time is small (e.g. the expected 1% 

to 2% PD decrease PD due to anastrozole treatment).  Cumulus assessed PD had lower 

variability (LOA ≤ ±10% PD) and smaller biases (<2%) than visually assessed PD (LOA ≥ 

±13%, biases 2 and 12%).  This implies Cumulus assessed PD is more reliable than visually 

assessed PD.   

 

The results also revealed that measurements made with the visual and Cumulus techniques are 

not interchangeable.  The film mammogram inter-technique bias for PD was –12% for both 

measurement comparisons (M1 vs M1, and M2 vs M2, Figure 5-9).  For digital mammograms, 

the inter-technique bias was –7% for the measurement 1 comparison and –21% for the 

measurement 2 comparison, Figure 5-10. The M1 and M2 Cumulus and visual assessments 

were similar for film mammograms (Figure 5-3).  The M1 and M2 measurements for digital 

mammograms made with Cumulus were similar, but the digital mammogram visual assessments 

were quite dissimilar (Figure 5-4); the dissimilarity of the visual assessments has caused the 

disparity between the digital mammogram M1 and M2 estimates of inter-technique bias.    Both 

the film and digital mammogram inter-technique biases are approximately equal to or greater 

than the smallest meaningful clinical difference of 10% PD.   

 

The intra-observer ICCs of 0.95 to 0.97 for PD on film mammogram repeated measurements 

with the visual and Cumulus assessment techniques are high (Table 5-3), and similar to other 

film mammogram repeated measurements ICCs reported in the MD literature [189, 192].  The 

ICCs of 0.94 to 0.95 for Cumulus repeated measurements of digital mammograms are also 

similar [400]. The ICCs for visual assessments of digital mammograms were still much lower 
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(~0.6) than for Cumulus (~0.9), even after restriction to make the digital mammogram set more 

similar to the film set.   

 

Although there numerous ways to calculate random measurement error (precision) [465], 

including ICCs and least significant change (LSC) [465] as described by Gluer et al, the Bland 

Altman method used in this thesis uses absolute units to assess precision with 95% confidence 

via the LOA (limits of agreement).  This means the LOA is independent of the MD values 

measured.  Other estimates of precision, including the LSC—defined as a change exceeding 2√2 

times the precision error of a technique—are dependent upon the size of the values measured 

(e.g. the Coefficient of Variation (CV) for DXA scans), and hence are less desirable than the 

LOA (also known as the smallest detectable difference (SDD)) for use in daily clinical practice 

[465] 

 

The descriptive graphs in Figure 5-3 and Figure 5-4 (Aims 2.1 and 2.2) show median percent 

density is lower for each method of assessment for digital mammograms compared to that for 

the film-screen mammograms, with the exception of Visual measurement 1.  This is not 

unexpected, due to a combination of factors.  Film-screen mammograms from women in the 

IBIS-II trial predate digital mammograms.  Hence the average age of the women contributing 

digital mammograms to this analysis is likely to be older than for film-screen mammography in 

this analysis, and PD declines with age.  Digital post-processing of the digital mammographic 

images likely also plays a large role.  Breast cancer detection is enhanced for women with dense 

breasts using digital mammography compared to film (0.59 vs 0.27 sensitivity) [459], which is 

likely due to removal of density from the image during digital post-processing.    

 

The large intra-observer (intra-method) bias and LOA for visually assessed digital 

mammograms (Figure 5-7, Figure 5-8) in contrast to the film-only repeated measurements 

(Figure 5-5, Figure 5-6) was potentially influenced by a number of factors.  Second reads of the 

film mammograms both visually and with Cumulus not included in measurement 1 and 
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measurement 2 data sets were performed a few days after the first measurements.  In keeping 

with another report in the literature [400], this additional set of measurements (‘measurement 

A’) was excluded from further analyses because it occurred < 1 month after measurement 1.   

This additional reading of the film mammograms but not digital mammograms may have 

increased the similarity of the film Measurement 1 and Measurement 2 assessments. 

 

The large bias in visual reading of the digital mammograms could also have been influenced by 

the presence of just one digital mammogram among the set of training mammograms in the 

IBIS-II density training DVD (the remainder were film-screen).  Retraining was undertaken 

with the IBIS-II mammographic density training DVD prior to reading each set of 

mammograms (film and digital) visually for this Aim; hence visual MD assessment retraining 

occurred at least 5 times during 2014.  Furthermore, multiple training sessions had been 

undertaken since 2010, when a copy of the IBIS-II density training DVD was first received.  

Re-training (recalibration) was also undertaken before each of 15 Cumulus batch reads of the 

Collection 1 IBIS-II mammograms in 2013.  Digital mammograms have an appearance distinct 

from that of film mammograms.  Because reinforcement of PD visual assessment occurred only 

with film-screen mammograms on the IBIS-II training DVD, this could have reduced the ability 

to consistently assess PD visually on digital mammograms. The multiple Views from the same 

episode for film but not digital mammograms may have slightly increased the reliability of the 

film mammogram assessments 

 
Visual reading of the set of mammograms (film and digital) occurred before assessment of the 

mammograms by Cumulus for each measurement (measurement 1 and measurement 2).  The 

prior exposure to each set of mammograms visually before assessing the same set of 

mammograms with Cumulus may have increased the accuracy of the Cumulus assessments.  

 

The measurement 1 reads of the digital mammograms on 25 September 2014 occurred relatively 

soon after the measurements for the film screen mammograms (9 July and 12 August). Because 

film mammograms have (on average) higher PD than digital mammograms, this potentially 
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could have influenced the higher visual measurement 1 assessments of the digital 

mammograms.  The appearance of the film mammogram set may have had less influence on the 

measurement 2 reading of the digital mammogram set which occurred in early November 2014.  

Alternatively, there may also have been a keen interest in performing the digital mammogram 

analysis after waiting the required month between reads, and hence proper attention was not 

paid to the visual assessment of digital mammograms at Measurement 2.   

 

Cumulus was developed for use on film-screen mammograms.  This could have also contributed 

to the increased variability observed in the Cumulus assessments of film-screen vs digital 

mammograms.  Recent reports in the literature state that Cumulus appears to be a robust tool to 

assess density on digital mammograms [400, 401], hence the increased variability is likely due 

to the relative unfamiliarity in assessing digital vs film-screen mammograms to complete the 

Aim of this Chapter. 

 

Regardless of what influenced the substantial bias between the visual PD reads at measurement 

1 and 2 for the digital mammogram set, the existence of a bias at least 10% greater for Visually 

assessed compared to Cumulus assessed PD supports the assertion that Cumulus estimates of 

density (and that of other semi-automated e.g. Madena and/or quantitative methods e.g. 

planimetry) are more reliable than estimates of visually assessed density.   

 

Recent data has shown that radiologists who undertook reading of >6,000 mammograms 

annually are able to accurately categorise breast density into three groups with an accuracy of 

>90% (ANZCR mammography Synoptic 2002); in contrast radiologists who undertook fewer 

mammography assessments per year (mean 3,750) accurately assessed breast density 32 to 55% 

of the time [466]. Hence more frequent assessments of mammograms and/or increased 

interest/training in mammography assessment may impact radiologists’ ability to reliably assess 

breast density visually [467].  This implies that reliability may improve with further MD 

assessments of digital mammograms for this project. 
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Figure 5‐13 Cumulus density measurement and density selection issues 
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Assessing PD with Cumulus is more time consuming to complete than visually assessed PD (~2 

hours/100 mammograms for Cumulus, vs <30 minutes for 100 mammograms visually).  

However the increase in time taken for Cumulus appears to be offset by the increase in 

reliability compared to visual assessment.  

 

For Aim 2.2 (PD inter-technique reliability), differences in both breast area and dense area 

assessment account for the negative relationship with increasing PD seen in Figure 5-9 and 

Figure 5-10 for the Cumulus vs Visual methods.  A mammogram is a two-dimensional 

representation of a three dimensional structure. Not only are breast tissues visible (skin,  

subcutaneous fat, glandular/connective tissue), but chest skin and (pectoral) muscle may also 

appear on the mammographic image (Figure 5-13 A, below). Skin and muscle add to the 

thickness and x-ray absorption of the tissues viewed on a mammogram, and hence the density of 

that area of the mammogram.  These tissues were typically masked during image assessment 

with Cumulus to exclude them during measurement (Figure 5-13 D to G).  Dense tissue near the 

outer breast (skin) edge is often difficult to capture in Cumulus without also selecting non-dense 

tissue in the middle and inner breast because the grey levels are similar (Figure 5-13 C).  This is  

presumably because the tissue adjacent to the outer breast edge contains more adipose tissue 

(which is translucent to x-rays = darker) and/or is not as thick.   

 

Visual assessment of density is not subject to the same constraints as Cumulus assessed density 

(Figure 5-14, top and third rows).  Visual assessment does not require explicit masking of breast 

areas to eliminate incorporation of non-dense tissue because visually assessed density is not as 

affected by the absolute grey levels present in the mammographic image.  The eye is able to 

discern the relative grey levels as dense or non-dense irrespective of the background tissue 

appearance.  As described above, dense tissue in both the area of the breast near the nipple/outer 

skin area and the area adjacent to the chest can be difficult to accurately capture in the Cumulus 

program (Figure 5-13, Figure 5-14).   
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Figure 5‐14 Differences in net PD between Cumulus assessed and visually assessed PD 
2008 IBIS‐II film mammograms, Measurement 1.  Cumulus assessed PD is shown in A & C; original mmgs 
shown in B & D (as used for Visual assessment).  A & B are the same mammogram; C & D are the same 
mammogram.  A large difference is found between Visual and Cumulus PD for the upper mammogram 
(–29.0%) compared to the lower mammogram (1.5%).  The dense tissue appears bright in A & B, the 
background (non‐dense) lighter than in C & D.  This makes the dense tissue more difficult to capture in 
Cumulus (green outline, A); note the missed dense tissue on the right hand side (outer edge) of A.  The 
dense tissue in the lower panel (C & D) is not as bright as in A & B, but the non‐dense area is darker than 
in A&B.  Differences in image acquisition (e.g. exposure time) may account for the differences in 
appearance of non‐dense tissue on the mammograms.  The appearance of the mammograms 
contributes to the negative correlation on the Visual vs Cumulus PD Bland‐Altman plots (Figure 5‐9, 
Figure 5‐10) Potentially, additional dense tissue could be captured in Cumulus to better approximate the 
Visual assessment to correct for these differences for this particular mammogram. 
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Figure 5‐15 Selection of additional dense area in Cumulus to improve similarity to visually assessed PD 
The selection of additional dense area in Cumulus (A, B) more closely matches visually assessed PD 
(75%, top of Figure 5‐14).  Some of the dense tissue near the outer breast edge is still not selected in 
Cumulus, which still contributes to the differences in Visual vs Cumulus PD for this mammogram.   

 
 



Chapter 5 

153 

As per Figure 5-13 and Figure 5-14, the dense tissue near the nipple not captured by Cumulus is 

likely to be offset by the unmasked thicker tissue at the inner edge of the breast which has been 

captured as density.  However, in Figure 5-14 A & B, the dense tissue not captured by Cumulus 

due to concomitant brightness of the background tissue contributes to the lower PD calculated 

by the Cumulus program compared to visually assessed PD.  The difference in PD between 

Cumulus and visual PD for this particular mammogram could potentially be reduced by 

additional capture of dense tissue in Cumulus (Figure 5-15).   

 

The results from the film mammogram 4.3OD vs 4.7OD comparison imply that percent density 

assessed at 4.3OD may be slightly higher than PD assessed on the same film-screen 

mammograms scanned at 4.7OD (as shown in the Bland Altman graph biases of ~0.5% in 

Cumulus, ~1% in visual), Figure 5-11and Figure 5-12.  However, repeated measurements 1 

month apart using both the Cumulus and visual assessment techniques on film-screen 

mammograms in Aim 2.1 (Intra-technique reliability) yielded PD biases of 1% and 2% 

respectively.  The slight increase in PD observed in this analysis for film mammograms 

digitised at 4.3OD may be just due to the inherent variability of these subjective assessments.   

 

Even if the slight increase in PD observed for the 4.3OD scans is attributable to differences in 

appearance of 4.3OD and 4.7OD scans, the slight difference in PD (~0.5 to ~1%) is unlikely to 

have a clinical impact on the assessment of absolute PD for these women.  However, since the 

reduction in PD due to treatment with anastrozole is expected to be small (~1 to 2%) relative to 

the variability in repeated assessments (± ~10%), use of a standardised scanning procedure (e.g. 

either 4.3OD or 4.7OD) may assist with improving the likelihood a reduction in PD due to AI 

treatment will be detectable if it is present.   

 

The variability (limits of agreement (LOA)) in Aim 2.3a of ±9 to 10% is similar to those in Aim 

2.1, which were ±8% for Cumulus and ±13% for Visual (Table 5-3).  The Cumulus LOA for 

Aim 2.3a, ±9%, may be slightly higher than that in the repeated measurements in Aim 2.1 
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because mammograms from all four views (RCC, LCC, RMLO, LMLO) were included in this 

analysis.  PD measured on CC vs MLO views has been shown to produce slightly different 

gradients of BC risk [468].  Aim 2.1 included only CC view mammograms.   

 

The LOA for the visually assessed digitised film-screen mammograms for this Aim may have 

been lower (±9.5%) than in Aim 2.1 (±13%) because visual assessments for each participant’s 

mammograms occurred only minutes apart, instead of being separated by 1 month of time.   

Comparison of the bias and LOA between the (CC view) mammograms assessed visually using 

Cumulus/full size DICOM files (Aim 2.1) and Windows Explore/quarter-size PNG files (Aim 

2.3a) yielded a bias of ~2%, and LOA of ± 14.5% (Bland Altman plots not shown).  These 

assessments occurred approximately nine months apart, and are not substantially different from 

the bias (2%) and LOA (± 13%) observed in Aim 2.1.  Visual assessment of mammograms in 

either Cumulus or Windows Explorer seems to be interchangeable.  However, to reduce 

potential variability, one technique or the other should probably be used when trying to assess 

small changes in PD over time (i.e. longitudinal PD), since the LOA between the two methods 

was slightly higher (14.5%) compared to repeated visual assessments in Cumulus alone (13%).   

 

The standard deviation (SD) of visually assessed PD from mammograms scanned at 4.3OD was 

smaller (21.8) than that for the same mammograms scanned at 4.7OD (35.5), Table 5-4.  

However, these SDs were not significantly different (p = 0.72, variance ratio test).  The standard 

deviation (SD) for the 4.3OD mammograms assessed visually (21.8) was greater than both SDs 

for 4.3OD (15.7) and 4.7OD (18.6) mammograms assessed with Cumulus, this SD of 21.8 was 

statistically significantly different from both of the Cumulus assessed SDs (p<0.0001, variance 

ratio test).  This supports the observation that Cumulus assessed PD is less variable than 

visually assessed PD, and that use of 4.3OD vs 4.7OD mammograms does not significantly 

affect the absolute value of PD assigned using either assessment method.     
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The assumption that PD would be similar when measured in both film-screen and digital 

mammograms was further disproved by the results of Aim 2.3b (PD comparison of 4.7OD film 

and digital mammograms).  The descriptive distributions of PD for film vs digital mammograms 

(Figure 5-3 and Figure 5-4) showed median PD is lower for digital mammograms than film.  

This difference could have resulted from the natural decline over time in PD, since the film 

mammograms preceded the digital mammograms.  The results from Aim 2.3b show more 

specifically there are statistically significant differences between PD assessed on film screen vs 

digital mammograms from the same IBIS-II trial participant, Table 5-5. Furthermore, the 

average PD difference between film and digital mammograms is more than would be expected 

due to an annual decrease in PD of 1% (Table 5-6, Table 5-7, Table 5-8).  The decrease in PD is 

likely due to the inherent differences in the presentation of PD on film-screen and (processed) 

digital mammograms. 	

 

A limitation for the results of this chapter is that the sets of mammograms used in some analyses 

contained multiple potential violations of the requirement for independent samples.  Restriction 

to a single view per episode in Aim 2.1 did not substantially change the ICC results (Table 5-3); 

trends in difference for the bias and LOA were inconsistent (Table 5-3).   

 

The variability for most results in this chapter is likely smaller than might have occurred if each 

participant had only been sampled once.  However, as mentioned in Section 5.3 Statistical 

Methods, the use of multiple images from the same mammogram, mammographic episode 

and/or participant may not be as problematic for the Aims of this chapter as for some research 

projects.  This is because the variability of the subjective nature of the visual and Cumulus 

techniques is likely far greater than the opposing effect of what are effectively repeated 

measurements within the datasets. The use of repeated mammograms for some participants 

during completion of Aims 2.1 to 2.3 is consistent with the nature of the repeated measurements 

which will be utilised for Aim 4 and the Primary Aim of this thesis, and hence reflects the likely 

variation present in the dataset during assessment of individual Views. The entire set of analyses 
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in this chapter could potentially be repeated using the larger mammographic data set available 

from both Collection 1 and Collection 2 rounds of mammogram collection; these data may 

provide results less impacted by the non-independence of the Collection 1 data and provide a 

slightly different insight into the repeatability of Cumulus vs visual assessments for film and 

digital mammograms.   

 

Another limitation for this project was the use of one observer to perform all measurements for 

this Aim.  Inclusion of additional observers would provide a more thorough insight into the 

subjective nature of the Cumulus and visual assessment methods on this set of IBIS-II trial 

mammograms.  However, use of single observers is common during studies involving 

measurement of MD [188, 296, 312], in part due to the introduction of other factors such as 

inter-observer differences in MD assessment. 

 

5.6 Chapter summary 
 

Percent density (PD) was challenging to measure reliably and repeatedly on film and digital 

mammograms.  Ideally, the longitudinal (repeated) measurements made on IBIS-II participant 

mammograms to achieve the Primary Aim of this project would vary less than the average 

change in PD expected to occur from trial hormonal treatment.  For IBIS-II participants treated 

with anastrozole, the expected average reduction in PD compared to that of controls is 

approximately 1 to 2% [29]. The most reliable outcome for repeated measurements was 

observed using the Cumulus assessment technique of 72 film-screen mammograms: Bland 

Altman limits of agreement (LOA) were ± 8%, with a mean difference (bias) of 0.6% (95%CI 

0.1 to 1.5%).  The Intra Class Correlation (ICC) for this set of repeated measurements was 0.97 

(95%CI 0.96 to 0.98).  This ICC compares favourably with repeated measurements performed 

by experts in the use of Cumulus [184]. 
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However, ICCs were generally lower and Bland Altman LOA and biases greater with visual 

assessment of film mammograms, and Cumulus and visual assessment of digital mammograms.  

Digital mammograms assessed with Cumulus compared well with that for film screen 

mammograms: Bland Altman LOA was ± 10%, with a mean difference (bias) of ~2%; the ICC 

was 0.94 (95%CI 0.91 to 0.96).  Visual assessment of film mammograms had LOA of ± 13%, 

with a bias of 2%, and an ICC of 0.95 (95%CI 0.92 to 0.97).  Visual assessment performed 

much more poorly on digital mammograms: LOA ±29%, bias ~12 %, ICC 0.64.   Cumulus 

provides a more reliable and repeatable method for assessing density on both film and digital 

mammograms. Assessing PD with Cumulus is more time consuming to complete than visually 

assessed PD (~2 hours/100 mammograms for Cumulus, vs <30 minutes for 100 mammograms 

visually).   Cumulus assessment is much more time consuming to perform than both visual and 

fully automated assessment techniques, and hence is not practical for clinical settings (e.g. 

BreastScreen).  Variability with Cumulus assessed PD is still high, and is approximately 

equivalent to the smallest meaningful change in PD (10%) associated with a clinical difference 

in breast cancer outcomes. 

 

Due to the differences in PD observed with the Visual and Cumulus methods, these assessment 

techniques are not interchangeable.  The lower average PD observed for digital mammograms 

compared to film mammograms for the same IBIS-II participants is greater than expected due to 

the estimated average annual change in PD of 1%; digital mammogram PD may be lower due to 

inherent differences in acquisition, as well as image post-processing by mammography machine 

software.  PD assessed visually on 4.3OD and 4.7OD scans of the same mammogram did not 

differ significantly, and could be interchanged if required.   

 

Because MD measurements made with the Cumulus program were less variable than MD 

measurements made visually, longitudinal assessment of IBIS-II mammograms for annual 

change in MD (Aims 4 and 5) as well as the participants baseline characteristics analysis (Aim 

3) was undertaken with the Cumulus program.  With adequate training, visually assessed 
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density may be useful in settings where Cumulus assessed PD is impractical.  Ready access to 

freely available, fully automated techniques to measure MD on film, processed digital and raw 

(unprocessed) digital mammograms is desirable.  Due to differences in MD assessment which 

are likely to result if two or more different assessment techniques are utilised, use of 

standardised processing and measurement techniques is recommended when undertaking 

longitudinal measurements of density.  This is challenging in the multi-centre, international 

setting typical in breast cancer clinical trials.   
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6. Descriptive statistics and MD associations of baseline characteristics 

 
This chapter describes the aims, general methods, and statistical methods utilised for Aim 3.  

Results of the analysis follow, leading with a discussion of the mammographic technical factors 

which affected quantification and modelling of MD.  Next, measures of central tendency are 

tabulated for the baseline characteristics of the CMN IBIS-II participants, including MD.  

Simple regression of the MD parameters with baseline covariates is undertaken, followed by 

multivariable (multiple) linear regression of the MD parameters and baseline covariates. The 

chapter concludes with a discussion of the results. 

 

6.1 Aim  
 

The Aim for this chapter (Aim 3) was to undertake descriptive statistics of the baseline 

characteristics of the CMN IBIS-II participants who contributed mammograms to this project, 

and to quantify the relationship between baseline MD and the participants’ baseline 

characteristics.   

 

6.2 Methods 

6.2.1 Participants and mammograms 
 

Eligibility for the IBIS-II CMN and AI substudy was described in Chapter 3. Participants 

undertook trial mammography approximately annually; trial mammographic episodes usually 

coincided with the IBIS-II annual follow up visit. Mammograms taken up to 1 year prior to 

randomisation were utilised as the baseline measurement of MD. Baseline mammograms were 

taken at a variety of institutions, including the Calvary Mater Newcastle.  All trial follow up 

mammograms were taken on a single mammography machine in the Radiology Department at 

the Calvary Mater Newcastle hospital (CMN). The transition from film-screen to computed 

radiography (CR) digital mammograms at CMN occurred after 17 December 2008.  
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Standard mammographic Views of the breasts, namely the right cranio-caudal (RCC), left CC 

(LCC), right medio-lateral oblique (RMLO), and left MLO (LMLO) Views were assessed for 

each woman for each mammography episode (time point), including all baseline episodes. This 

chapter contains some analyses utilising individual Views and pairs of Views (averaged), 

however, the Aim for this chapter was undertaken primarily with MD represented as the average 

of the four standard mammographic Views per episode.  The average of all four Views was 

employed to reduce MD measurement error— which on average was ±8% PD for film-screen 

mammograms and ±10% PD for digital mammograms using Cumulus (Aim 2, Chapter 5).  Use 

of average MD per episode also helped simplify statistical analyses, and enabled independence 

assumptions for regression models to be met. 

 

6.2.2 Assessment of mammographic density 
 
Participant mammograms were assessed for density in Cumulus in random order for each 

participant [399].   Hence, for a woman with baseline mammograms and three follow ups, 16 

mammograms were assessed for density in Cumulus in random order.  For instance, the LCC 

View from the last follow up could be read first, followed by the RMLO View from the baseline 

follow up, etc.  Cumulus assessments for mammograms from Collection 1 were performed on 

all available mammograms— film, digital printed to film (DoF), and (fully electronic) digital— 

whilst Collection 2 Cumulus assessments were performed only on film and digital 

mammograms.  

 

Only measurements from film-screen and fully electronic ‘original’ digital mammograms were 

utilised for this and subsequent analyses.  Measurements from digital mammograms printed to 

film (DoF) were not utilised because they were fewer in number than their fully electronic 

counterparts, and did not appear to provide a representation of breast density which was 

consistent with other digital mammograms; this introduced additional variability into the 

longitudinal MD measurements. Hence measurements from DoF mammograms were omitted. 
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6.2.3 Measures 
 

As described previously, percent (mammographic) density is the proportion of the breast 

covered by mammographically dense tissues. The Cumulus program is used to assess the total 

breast area (BA) and the area of dense tissue (DA) on the breast, which outputs DA and BA as a 

raster size (number of pixels).  The percent density (PD) parameter value for these Cumulus 

measurements was derived by dividing area of the breast selected as dense divided by the total 

breast area: PD = DA / BA.  PD is a dimensionless parameter, because it is one area, DA, 

divided by another, BA.  Comparisons of one PD to another are hence independent of the pixel 

spacing in the images. 

 

DA and BA can also be used to estimate the adipose area (AA) and percent adipose area of 

tissue on the breast, as follows: AA = BA–DA, and PA = AA/BA.  Although less commonly 

reported than PD or DA, AA and PA may be independently [186] and inversely associated with 

BC risk [469].  Because DA, BA and AA are all measures of square area, the size of the pixel 

spacing of the mammograms affects the estimates of these MD parameters. 

 

PD, DA, AA and PA can be considered different MD attributes, components, or 

‘phenotypes’[469]. Three of these MD attributes (PD, DA, AA) were considered as potential 

longitudinal MD outcomes of interest for this project, and therefore utilised as outcomes for the 

Aim of this chapter.  PA was not utilised because the associations for PA would likely be 

identical to those for AA.  BA was also utilised in baseline analyses for the current Aim because 

it was necessary to assess the longitudinal behaviour of BA in future Aims; BA should remain 

relatively constant longitudinally, since both AI treatment and time (age) were not expected to 

affect it. 
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The covariates considered during the analysis for Aim 3 are listed in Table 6-1, below.  

Table 6‐1 Covariates (confounders/modifiers of mammographic density) and MD technical factors 

Covariate  Description, rationale for covariate

Age  Age at randomisation.  Density is expected to decrease as age increases.  
Increasing age is also associated with a slower rate of change in MD. 

Weight  Increasing weight is associated with decreasing percent density (PD).    

Height  Increasing height is associated with increasing density.  

Body Mass Index  BMI = (weight in kilograms)/(height in metres)2.  PD decreases as BMI increases.   

Age at menarche  Density tends to increase with increasing age at menarche, although BC risk is 
decreased with increasing age at menarche.   

Parity (yes/no)  In general, increasing parity is associated with decreasing mammographic 
density, as well as a decrease in breast cancer (BC) risk.   

Age at first birth  Age at first pregnancy ≥ 28 weeks.  Lower age at first birth is associated with 
decreased BC risk and lower MD.  Late age at first birth (30 to 35+) may be 
associated with an increase in MD, and may be associated with a decrease in 
age‐related MD decline in the general population.    
The effect of age at first birth was examined in the model by use of a continuous 
variable (in years) and as a categorical parameter described in a later section of 
this chapter.   

Previous oral 
contraceptive use 

The relationship with oral contraceptive use and MD is not well established.  
Modelled as both a dichotomous parameter (never/ex‐user) and continuously 
(months of total use). 

Age at 
menopause 

Later age at menopause may be associated with higher MD, and is associated 
with higher BC risk.   

Previous HRT use   Whilst current HRT use is associated with both an increase in MD and BC risk, the 
relationship with MD and previous HRT use is less well characterised.  Modelled 
as a categorical variable (dichotomous), and as a continuous parameter: total 
months of use.   

Family history of 
BC and/or OC 

The number of first and second degree relatives, age at which breast cancer or 
ovarian cancer was diagnosed, and whether the BC was bilateral was recorded 
for IBIS‐II participants at baseline.  Number of relatives is likely to be positively 
associated with MD at baseline because increasing family history is associated 
with higher BC risk. Number of relatives may or may not be associated with 
change in MD over time.  BC risk will be modelled as total number of relatives 
with BC and/or OC (as both a continuous and categorical parameter). A derived 
parameter, weighted number relatives (first degree relative = 1, second degree 
relative = 0.5) was also used to better approximate the increase in BC risk due to 
first compared to second degree relatives (this is because on average, second 
degree relatives share half the number of genes that first degree relatives share 
with an individual). 

Smoking status  Never, current or ex‐smoker.  Smoking likely has a weak, inverse relationship 
with MD through reduction of (lifetime) estrogen exposure.  Modelled as a three 
category categorical variable. 

IBIS‐I 
participation 
(yes/no) 

IBIS‐I participants were randomised to receive 5 years of tamoxifen or placebo.  
Former IBIS‐I participants were eligible to enter the IBIS‐II trial from June 2007. 
Active trial treatment in IBIS‐I may (inversely) affect subsequent baseline and/or 
longitudinal MD in IBIS‐II, because tamoxifen treatment tends to lower MD. 

‘Technical’ mammographic parameters

Film vs Digital 
mammograms 
 

Density tends to be higher on film compared to digital mammograms, due to the 
propensity of post‐acquisition processing to remove density on digital 
mammograms.   
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Covariate  Description, rationale for covariate

Post‐processing 
software version 
and/or hardware 
configuration 

Different software versions, and/or different digital mammography systems may 
utilise different algorithms to remove the dense tissue on the final, processed 
image.  This can cause the appearance of increased or decreased 
mammographic density for individual participants, compared to how other 
software versions and/or digital mammography systems may render the 
appearance of the density on their mammograms. This parameter is modelled as 
a categorical variable. 

CC vs MLO Views  The cranio‐caudal standard mammographic View contains less cross sectional 
area of the breast than the medio‐lateral oblique standard mammographic View.  
These differences in cross‐sectional area likely affect the amount of dense area 
measured on the CC vs MLO mammograms, and may also affect the relative 
percentage of the breast covered by dense tissues.   

Breast laterality 
(right vs left side) 

The left breast tends to be slightly larger than the right breast in many women.  
As for the differences in BA between CC vs MLO Views, this (smaller) difference 
in cross sectional area between right and left mammograms may also affect the 
amount of DA and PD measured. 

 

6.3 Statistical Methods 
 

All analyses were undertaken using Stata v12.1.  P-values <0.05 were considered significant. 

Back transformation of coefficients from models with transformed outcome parameters was not 

performed to minimise reporting errors. Coefficients from regression models utilising 

untransformed MD thus are presented in % (PD) or mm2 (DA, BA and AA).  Coefficients from 

models utilising square root and log transformed MD are presented in square root or log 

transformed % and mm2.   

 

Pixel spacing varied for different mammographic Versions. This meant that the raster (total 

number of pixels) for DA and BA from mammograms with different spacing of pixels could not 

be directly compared, as they represented different sized areas.  The DA and BA rasters were 

converted to area in mm2 using the following formula: 

Equation 6‐1 

 

	 	
	#	 	 	
#	 /

		 	 	#	 	  

 

Box plots of all mammograms collected during Collection 1 and Collection 2 (2130 film and 

digital mammograms from 541 episodes) were prepared to compare the differences in raw vs 
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converted area of BA and DA.  Comparisons were made for BA and DA between different 

mammographic Versions using a Kruskal-Wallis test on 2126 mammograms from 540 episodes 

(one episode collected at year 8 was omitted).  A non-parametric trend test [470] was also 

utilised to assess trend across mammogram Versions for adjusted BA. 

 
An average value was calculated for PD, DA, BA and AA for each baseline episode. For 

example, average baseline PD for each participant was calculated using the PD measurements 

for the RCC, LCC, RMLO and LMLO views at baseline for that participant; this is equal to 

(RCC + LCC+ RMLO+ LMLO)/4.  This was done to provide a better estimate of the MD 

parameters for each episode, given the inherent variability of the subjective measurements made 

using Cumulus as noted during Chapter 5 (Aim 2, reliability analysis). 

 

6.3.1 Variable checking  
 

Checking of each parameter was undertaken at baseline.  Categorical variables were expressed 

as frequencies and percentages, and these values examined for plausibility.  Histograms and 

scatter plots were created to check for missing values, potential outliers and assess normality.  

MD parameters were also checked longitudinally using scatter plots and line plots.  

 

PD, DA, AA and BA all were right-skewed.  Ladder of powers graphs indicated the 

distributions for all four MD parameters improved with square root transformation.  Log 

transformation also improved normality of the distributions.  Due to the strong right skew of PD 

and DA, square root (sqrt) and natural logarithm (ln) transformations of these MD parameters 

were assessed during statistical modelling.   BA and AA were less strongly right skewed, and 

were modelled in both original units and with a square root transformation.   

 

Four baseline episodes had average PD <1%.  Hence the square root of average PD for these 

four baseline episodes increased compared to the raw PD value— unlike episodes with average 

PD>1.  However, the relative order of the measurements was maintained.  Given the inherent 
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variability of the semi-automated PD measurements in Cumulus, this slight loss of precision of 

less than 1% was considered negligible.  All averages of DA, BA and AA per episode were  

values greater than 1, hence square root transformation was consistent for all episodes. 

 

One participant was notable with very dense breasts (PD≥75%); this was unusual compared to 

other CMN participants.  Visual comparison of PD and the Cumulus assessments confirmed that 

the MD measurements for this participant were valid. 

 
Figure 6‐1 PD over time, by mammogram Version over time.   
The trend towards increasing PD over time for digital mammograms is due to changes in software and 
hardware configuration.   
CR – computed radiography (digital) mammograms; KE – Kodak Elite mammography machine 
5.2 – software version 5.2; 5.4– software version 5.4; Fuji– Fuji mammography machine 

 

A trend towards increasing PD over time was noted for participants with digital mammograms, 

Figure 6-1.  Because the mammograms were read in random order during Cumulus assessment, 

this trend was not noted earlier in the project.  The pattern of increasing PD over time was 

unexpected, as typically PD will decrease over time with age— until perhaps age 70 when this 

trend may reverse [471].  The analysis for Aim 2 had revealed that PD tended to be different 

between mammogram Types (film vs digital): PD on film mammograms tends to be higher than 
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for digital mammograms.  However a different factor appeared to be affecting PD within the 

digital mammographic Type.   

 

Subsequent inspection of the DICOM header file for digital mammograms revealed three 

different configurations of software and hardware which were utilised during the period from 

April 2009 to July 2014 at the CMN Radiology department.  When reviewed visually, 

mammograms captured using the older Kodak Elite CR software (v5.2) were generally darker 

with less dense tissue than the later version of the Kodak Elite CR software (v5.4).  Mammo-

grams taken most recently with the Fuji CR machine tended to be brighter with more dense 

tissue than v5.4 of the Kodak CR machine, Figure 6-2.  Hence, the post-processing performed 

on the mammographic image appears to have retained more of the dense tissue over time, 

although an increase in MD over time due to other factors could not be excluded.   

 

2010 mammogram 
Kodak  Elite CR v5.2 (KE52) 

2011 mammogram
Kodak  Elite CR v5.4 (KE54) 

2012 mammogram 
Fuji CR (Fuji) 

 

Figure 6‐2 Sequential annual LMLO CR mammograms for one participant  
The figure depicts the visual differences in MD for the different CR software and hardware versions of 
the CMN mammography machine. 

 

Figure 6-1 is tinted with different colours for each mammographic Version (film, KE52, KE54, 

Fuji).  Differentiation of PD by mammographic Version showed the pattern of increasing PD 

over time is related to changes in the software version of the Kodak Elite mammography 
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machines, as well as the change from the Kodak Elite CR machine to a Fuji CR mammography 

machine.  As a result of the discovery of the relationship between PD and mammogram 

Version, mammogram Version was added as technical mammographic covariate for this 

analysis.  

 

 

6.3.2 Covariate checking 
 

Two unusually high values were found during checking of covariates.  One participant had an 

extremely long duration of oral contraceptive use; another had an extremely long duration of 

HRT use.  Comparison of the time span between age at menarche and age at menopause 

revealed that the reported long duration of oral contraceptive use was plausible.  Review of the 

span of time between menopause and randomisation for the latter patient revealed an early age 

at menopause, which explained the long duration of HRT for this participant.  No other unusual 

covariate values or distributions were noted.  

Because some covariates were not applicable for some participants, categorical parameters were 

created for age at first birth (AFB), oral contraceptive (OC) duration, and HRT duration.  To 

examine the possible dose-effects of these parameters on MD, the quartile boundaries for HRT 

and oral contraceptive duration were used to create a five-category covariate; never-user 

participants were coded as 0 in the first (reference) category.  A six category parameter was 

created for age at first birth, with the first three categories utilising the CMN participants’ age at 

first birth quartile boundaries of 20, 22, and 25.   The fourth quartile was subdivided into two 

categories, for women aged 26 to 29 and age 30+; this was done to emulate the expected age 

related dose-response effects of first birth on PD [296].  The eight non-parous women were 

provided with a separate category.   

 

Categorical parameters with multiple categories are problematic in analyses when the sample 

size is small relative to the number of categories.  This is because few or none of the individuals 

in the sample may be present in some categories. Review of the breast cancer and  
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mammographic density literature was undertaken to examine which dichotomisations of AFB, 

duration of OC use and HRT duration were useful. AFB is sometimes dichotomised (e.g. age 

<26 vs 26+, age <20 vs 20+) and paired with number of children, e.g. 1 to 2 vs 3+ to create four 

or more categories for analysis [191, 203].  HRT and OC use are often divided into never vs 

ever, or never vs current vs past [218, 356].  The relationship between MD and AFB was also 

modelled through dichotomisation of AFB as <20 vs 20+, <26 vs 26+ and <30 vs 30+ [218], 

with a separate category for nulliparous women.  HRT and OC use were divided into ever vs 

never use. The category with the youngest parous women was utilised as the reference group for 

all age at first birth categorical parameters, whilst never use for OC and HRT was used as the 

reference category for all OC and HRT categorical parameters. 

 

Determination of one established BC risk factor, age at menopause, was complicated for 27 

participants for whom age at hysterectomy only was known.  Natural menopause was 

experienced by 57 participants whilst 36 participants underwent ovarian oblation, typically in 

conjunction with hysterectomy.  The remaining 27 participants underwent hysterectomy without 

a known age at natural menopause.  Age at natural menopause was estimated for this latter 

group of women using multiple imputation based on the age at natural menopause experienced 

by their 57 IBIS-II peers.  The imputed values for age at natural menopause were modelled as a 

multivariable linear relationship with age at natural menopause as the dependent variable and 

the IBIS-II baseline covariates related to age at natural menopause—smoking status, parous 

status, age at menarche, age at first birth, oral contraceptive use, age at randomisation and BMI 

[472-474]— as independent predictors of age at natural menopause. Twenty-five imputations 

were used during estimation of the missing age at menopause values. 

 

The estimated age at natural menopause was compared to age at hysterectomy for the 27 

participants by averaging the 25 MI ages for each participant.  Six participants were found to 

have had hysterectomy at an age older than their imputed age at menopause.  Two of these 

participants commenced HRT the same year as their hysterectomy, and hence were unlikely to 
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experience menopausal symptoms.  The average of the twenty-five MI ages for these 

participants were within 2 years of their age at hysterectomy. The other four participants 

previously participated in the IBIS-I trial.  As for HRT use, randomisation to active IBIS-I trial 

treatment may have masked any menopausal symptoms.  Hence it is possible that these six 

participants may have experienced menopause more closely to their imputed age than their age 

at hysterectomy.  The imputed ages for the  remaining 21participants who underwent 

hysterectomy without ovarian oblation are likely higher than their actual age at menopause; this 

is because women who undergo hysterectomy may become menopausal 2 to 4 years earlier than 

their counterparts who do not undergo hysterectomy [475].   

 

Regression modelling with the imputed values for age at menopause: 

In Aim 3, an average of the 25 imputations for age at menopause was calculated for each of the 

27 women for whom this parameter was imputed; this value was used as the age at menopause 

for the regression models.  Although use of the average of the imputations likely underestimates 

the variability of this parameter (e.g. the standard error for age at menopause would tend to be 

smaller than it should be), this allowed use of R2 (the coefficient of (multiple) determination) as 

output by the statistical program for consistency with all regression models.   

 

To assess the impact of the averaged MI values, regression coefficients for the parsimonious 

multivariable regression model of square root transformed PD with the properly imputed age at 

menopause (‘MI model’) were compared with a model fitted with the average of the 25 MI ages 

for the 27 CMN participants (‘non-MI model’).   

 

6.3.3 Baseline characteristics 
 
Baseline characteristics for the 120 CMN IBIS-II participants were reported and compared 

visually to all IBIS-II study participants; formal statistical testing was not undertaken because 

the CMN MD and AI substudy participants are a subset of the overall IBIS-II sample.  
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Summaries of measures of central tendency were prepared for important CMN IBIS-II trial 

baseline characteristics (covariates) including the MD parameters PD, DA, BA and AA.  

Median, 25th percentile (Q1), and 75th percentile (Q3) were reported for consistency with the 

baseline covariate measures reported for the International IBIS-II participant data.   

 

6.3.4 Bivariable analyses 
 
The relationship between each of the MD outcome parameters (PD, DA, AA and BA) and each 

of the explanatory variables at baseline was examined.  Relationships for continuous covariates 

were examined using scatter plots to check linearity, correlation coefficients to measure the 

strength of association, and simple linear regression.  Relationships between the MD outcomes 

and categorical explanatory variables were examined with summary statistics and graphs by 

each level of the categorical variable, and simple regression. 

 

The relationship between the MD parameters and covariates were checked graphically using 

scatter plots (for continuous covariates) and box plots (for categorical covariates); this output is 

not shown.  Graphical comparisons including scatterplots with best linear fit lines (for 

continuous covariates) and boxplots (for categorical covariates) were performed.  Covariates 

were also examined graphically by mammogram Type for any unexpected relationships 

between the explanatory variables and the MD parameters. Collinearity testing of continuous 

and categorical covariates was also performed to check for unexpected relationships between 

the MD parameters and the covariates. These relationships were compared against the expected 

relationships reviewed in thesis Chapter 2 (Literature Review).   

 

Collinearity testing was undertaken using the Stata collin and coldiag2 functions for continuous 

and categorical parameters respectively.  Collin provides output including variance inflation 

factor (VIF), tolerance [1/VIF = 1/(1-R2)], and condition index.  VIF  >3 (equivalent to a 

tolerance <33%)  and condition indices >30 were used to identify problems with collinearity of 
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continuous parameters.  Condition indices >30 and variance-decomposition proportions >0.3 

output by the function coldiag2 were used to identify problematic categorical parameters.   

 

With the exception of the non-dichotomous categorisations for age at first birth, oral 

contraceptive duration and HRT duration (described in 6.3.4.1, below) simple regression of 

each baseline covariate with the MD parameter at baseline for the 85 participants with baseline 

mammograms was undertaken; e.g. baseline age at randomisation (independent variable) was 

compared against PD for the baseline episodes (dependent variable). Regression was performed 

for all 85 baseline episodes (film + digital) and by Type: film (n=42 episodes), digital (n=43 

episodes).  Regression by mammogram Version (film n=42, KE52 n=28, KE54 n=12) was also 

performed for the strongest modifiers of MD— age (at randomisation) and BMI— to more 

closely examine the relationship of these confounders and MD within digital Version.  Use of 

Fuji CR mammograms commenced in August 2014, hence baseline data for this Version is not 

available.  Except where noted in the tables (e.g. for models by mammographic Type), each 

participant with baseline mammography contributed one MD measurement (the average of all 

four Views from the baseline episode) to each regression model.  

 

The coefficients (β) for simple regression were tabulated for untransformed per-episode 

averages of baseline PD, DA, BA and AA and also for square root transformed values of these 

MD parameters. R2— an estimate of model fit [476]— was also reported for each simple 

regression model.  Model residuals were checked against fitted values (MD predicted by the 

model) for heteroskedasticity and influential points.  As a sensitivity analysis, the one 

participant with very high PD (~80%) was typically omitted from PD regression models; three 

women with high PD (≥50%) were also frequently omitted from models of PD.  These results 

were compared with the regression results for all participants with baseline mammograms, to 

assess the influence of these higher PD participants on the coefficients and p-values.  Results 

from log transformed MD models are not presented due to heteroskedasticity of the residuals. 
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6.3.4.1 Simple regression, different categorisations for AFB, OC and HRT duration 

The simple regression analyses described above did not include the non-dichotomous 

categorisations for age at first birth, oral contraceptive duration and HRT duration.  Only the 

dichotomisation for OC and HRT use, and continuous representation of age at first birth were 

utilised.  This was done because, like the other parameters in Table 6-9, these parameters did 

not require additional calculations to create them; the values for these parameters were taken 

directly from the IBIS-II database    To see which categorical representation best described the 

relationship between age at first birth, OC use and HRT with the MD parameters, simple 

regression for the different categorisations of each parameter was performed. The best 

relationship for each parameter was determined by examining coefficient significance and R2 

value. The parameter categorisation with the smallest number of categories which maximised 

both significance (i.e. smaller p-value) and R2 was selected.  If no categorisation yielded any 

significant coefficients, then the simplest (most parsimonious) representation of that parameter 

was selected (i.e. the one with the fewest categories).   

 

6.3.5 Assessment of correlation and collinearity among explanatory 
variables 
 
Inter-covariate relationships were assessed using graphical techniques and collinearity testing as 

described for testing of correlation/collinearity between covariates and the MD parameters (e.g. 

box plots, scatter plots, review of VIF). 

 

6.3.6 Multivariable regression, avg baseline MD parameters vs baseline 
covariates 
 
Full multivariable regression models of MD were created utilising the best categorisation for 

AFB, HRT and OC use along with other baseline covariates: age at randomisation, BMI, age at 

menarche, age at menopause (imputed average), smoking status, previous IBIS-I participation, 

and the technical mammography covariate mammographic View.  Height and weight are 

collinear with BMI, as is mammographic Type with mammographic View thus these parameters 

could not be utilised in multivariable models simultaneously. The simple regression relationship 
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between family history and PD and DA (modelled as number of relatives and also as weighted 

number of relatives) appeared to be non-linear for weighted number of relatives (Table 6-9). 

The option of a dichotomous (yes/no) representation of the relationship of MD and number of 

relatives was not possible, because all CMN participants had at least one relative with BC 

and/or ovarian cancer.  Due to the non-linear relationship, number of relatives was not included 

in the multivariable MD models. 

 

Models were reduced from full to parsimonious using both backwards elimination and forward 

stepwise regression.  For backwards elimination, the covariate with the highest p-value was 

removed from the full model, and the resulting model retested until only covariates with p≤0.1 

remained.  The upper limit of 0.1 was selected for retention of covariates in the multivariable 

model to be conservative, in particular because of the small number of study participants.  R2 for 

each model was also reviewed to assess for the percentage of the variability in the dependent 

variable explained by the covariates in the model.  Forward stepwise regression reversed the 

process: single covariates were added to a simple regression model until only covariates with 

p≤0.1 remained. Higher order relationships such as Age2 (age* age interaction) which are 

sometimes significantly associated with MD, and other interactions between covariates were not 

prospectively explored during stepwise regression of these models.   

 

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), which are 

indices of overall (global) model fit [477] were evaluated for the model at each step, to ensure 

more parsimonious models corresponded to smaller AIC and BIC.  The AIC and BIC account 

for the complexity of a model (i.e. number of covariates in the model) [478].  Covariates for 

which BIC decreased <3 upon removal from the model were retained regardless of p-value.  

Covariates which decreased the AIC by more than 1 (but not the BIC by more than 3) upon 

removal from a model were noted. AIC and BIC are a better assessment of fit across models 

with differing numbers of covariates than (non-adjusted) R2, as well as -2LL (-2* Log 
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Likelihood, which is mainly used to compare nested models. AIC and BIC are therefore better 

than other model fit measures at identifying both fit and parsimony. 

 

Age at randomisation was retained in the models because age (along with BMI) is a well-

recognised strong confounder of MD.  PD and DA models which utilised digital mammograms 

were also adjusted for mammogram Version. Model coefficients for AA are not tabulated 

because both BA and AA showed a similar relationship with the covariates in the simple and 

multivariable regression models. 

 

Regression diagnostics were undertaken by checking for residual heteroskedasticity with scatter 

plots and histograms.  A set of sensitivity analyses was undertaken to review MD differences in 

CC vs MLO Views, and right vs left mammograms, as described next.  

 

6.3.7 Differences in MD measurements, by View, Type and Version 
 

Typically, one MD measurement made on a single View from a mammographic episode is 

utilised as representative of MD for that episode.  Potential MD differences for measurements 

made on right vs left mammograms, and MD differences for measurements made on CC vs 

MLO Views are not frequently reported.  The rationale and methods for this analysis, as well as 

results for the analysis and a discussion, are described in an appendix (Differences in MD 

measurements, by View, Type and Version). 

 

6.3.8 Simple regression of baseline PD with different View combinations 
 

As stated above, typically, one MD measurement made on a single View from a mammographic 

episode is utilised as representative of MD for that episode.  Potentially, the average of two, 

three or four Views may enhance the ability to observe significant expected, but less strong 

relationships between MD and other covariates (such as age at menarche) in small samples.  

Differences in the association of BC risk factors with average MD measured on different 

combinations of right vs left mammograms, and CC vs MLO Views are not frequently reported.   
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Simple regression was performed with PD represented as the average of different combinations 

of mammographic Views.  The different View combinations tested for untransformed PD (%) 

were each single View (RCC, LCC, RMLO, LMLO), the average of right and left CC Views, 

the average of right and left MLO Views, the average of both right side Views, the average of 

both left side Views and the average of all four Views (the MD representation usually used in 

this thesis).  Simple regression models were also fitted for natural log and square root 

transformed PD using the average of all four Views, as well as the RCC View and the average 

of the right and left MLO Views.  

 

Coefficients from the different PD simple regression models were examined to ascertain if they 

were similar (within +/- 10 to 20%) to the coefficients from the PD models with all four Views.  

Coefficient p-values for the models were also compared for significance (p<0.05). 

 

6.4 Results 
 

6.4.1 Dense and Breast Area measurements on mammograms 
 

CR mammograms from the Kodak Elite system utilised a 48.5micrometres (µm) pixel spacing 

(horizontally and vertically), whilst the electronic images from films digitised on the Array 

scanner and images acquired from the Fuji CR system had 50µm pixel spacing (horizontally and 

vertically).  This equates to 20 pixels per mm for a 50µm pixel spacing, and 20.62 pixels per 

mm for a 48.5µm pixel spacing [177, 479].  Using the formula in Equation 6-1 on page 163, the 

approximate number of pixels per square millimetre (mm2) are 425 pixels for a 48.5µm pixel 

spacing and 400 pixels for a 50µm pixel spacing.  Average DA and BA converted to mm2 using 

pixel densities of 425 pixels/mm2 and 400/mm2 are listed in columns 3 and 4, Table 6-2.  The 

approximate area difference in mm2 and % difference in area for average DA and BA for pixel 

spacings of 48.5µm vs 50µm are listed in columns 5 and 6, respectively.   
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Table 6‐2 Estimation of the difference in average1 breast BA and DA for differing pixel sizes 

MD 
parameter 

Average # 
of pixels 

(raster size) 

Area in mm2 
48.5µm pixel spacing
(425 pixels/mm2) 

Area in mm2 
50µm pixel spacing
(400 pixels/mm2) 

Area Difference (mm2) 
50µm – 48.5µm 
pixel spacing2 

% increase 
50µm vs 
48.5µm 
(ref)3 

DA  1,286,000  3026  3205 179 5.9% 
BA  7,772,000  18,287  19,430 1143 6.3% 

1
 Collection 1 mammograms only (2012, n=1333 unique mammograms (Table 5‐1)) 

2
 Area difference (column 5) =  column 4 – column 3 

3 % increase in area 50µm vs 49.5µm (column 6) = column 4/column 3 

 
 
The ‘average’ breast during Collection 1 (2012) had dense and breast area rasters of 1,286,000 

and 7,772,000.  The approximate average breast DA and BA areas differ by 179mm2 (1.8cm2) 

and 1143mm2 (11.43cm2), respectively, for 48.5µm vs 50µm pixel spacings (Table 6-2, column 

5). The difference in the number of pixels per mm2 for a 48.5µm vs 50µm pixel spacing (400 / 

425 = 94.1%, a ~6% relative difference) roughly corresponds to the % increase in approximate 

area for average DA and BA of ~6% for the 50µm spacing vs 48.5µm spacing (column 6). 

Converted (adjusted) Breast and Dense area to mm2 using Equation 6-1 (Figure 6-3, right 

column) shows a slight change in distribution compared to unconverted, ‘raw’ area in number of 

pixels (left column).  The relative distribution for BA (upper row, Figure 6-3) amongst 

mammogram Versions is more affected by the conversion than DA (lower row, Figure 6-3).  

Whilst the raw BA distribution for film mammograms (blue) is visibly lower compared to the 

raw digital mammogram distributions, this difference almost disappears after conversion from 

number of pixels to area in mm2. In comparison, both the raw and converted DA distributions 

for film mammograms (blue) is higher than all digital distributions.  An increase across DA 

digital Versions for KE52 (pink) to KE54 (green) to Fuji (yellow) is clearly visible on both the 

raw and the converted DA graphs. 

 

Statistical comparisons of the BA and DA distributions, Table 6-3, using a Kruskal-Wallis test 

confirmed that different raw mammogram Version distributions for BA are significantly 

different from each other, and the BA mammogram Version areas converted to mm2 are not 

significantly different.  The trend test for BA converted to mm2 was not significant but was 

close to significance at the 0.05 level (p=0.059).  



 Chapter 6 

177 

Figure 6‐3 BA and DA by mammogram Version, 2130 mammograms from 540 episodes 
Distribution before (left) and after conversion from pixel raster to area in mm2. Left column, raw area in 
# pixels. Right column, area converted to mm2 (Equation 6‐1, page 163) 

 
 
The conversion to mm2 has assisted with stability of BA across mammogram Versions, because 

significant differences between mammogram Versions are no longer present as they were for 

BA measured in raw units (pixel raster).  However, the trend test for BA was marginally non-

significant, which is supported by the visible increase in BA with change of mammographic 

Version over time (Figure 6-3).   DA for the different Versions differed significantly both 

before and after conversion, indicating substantial differences in DA were associated with 

mammographic Version, even after conversion of pixel raster to common units.  Unlike BA, 

conversion of DA to mm2 appears to have enhanced the differences in area distribution between 

the mammographic Versions, Figure 6-3.  

 
Table 6‐3‐ Sta s cal comparisons† of differences between BA, DA for mammogram Versions 

Parameter 
Comparison of area for mammogram Versions film, KE5.2, KE5.4 & Fuji*

Raw (unadjusted) area (# pixels) Adjusted area (mm2) 
BA  p<0.003 p=0.184‡ 
DA  p<0.001 p<0.001 

†Kruskal‐Wallis test    *16 ‘other’ mmgs not tested.  ‡p for trend = 0.059 

 

0 5.0e+06 1.0e+07 1.5e+07 2.0e+07
Raw Breast Area (#pixels)

Raw Breast Area, by mammogram Version

0 10,000 20,000 30,000 40,000 50,000
Breast Area (mm2)

(Adjusted) Breast Area in mm2, by mammogram Version

0 2.0e+06 4.0e+06 6.0e+06
Raw Dense Area (#pixels)

Raw Dense Area, by mammogram Version

Film KE5.2 KE5.4 Fuji

0 5,000 10,000 15,000
Dense Area (mm2)

(Adjusted) Dense Area in mm2, by mammogram Version

Film KE5.2 KE5.4 Fuji
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6.4.2 Baseline Characteristics, CMN IBIS-II participants 
 
Due to the high quality of the IBIS-II trial data, complete data was recorded for the four well 

established confounders of MD available for trial participants: age, body mass index (BMI), age 

at first birth (AFB), and age at menarche. As mentioned in 6.2 Methods, determination of 

another established BC risk covariate, age at menopause, was complicated for 27 participants 

for whom age at hysterectomy only was known; an imputed age was estimated for these 

participants. Age at natural menopause and/or age at ovarian oblation was known for the 

remaining 93 participants. 

 
Information for all 120 CMN participants was available for all baseline exploratory covariates: 

number of relatives with BC and/or ovarian cancer, smoking status, duration of hormone 

replacement therapy (HRT), duration of oral contraceptives (OC), and previous participation in 

the IBIS-I trial.  The median age at randomisation for the one-hundred and twenty IBIS-II 

participants from the Calvary Mater Newcastle hospital was 61.8 years, Table 6-4.  Median 

body mass index (BMI) was 28.5 kg/m2. 

Table 6‐4 Summary of 120 IBIS‐II CMN Participant Characteristics at Baseline (Randomisation) 

Parameter  N 
Median
 or % 

25
th
to 75

th
percentile

(Q1 to Q3) 
Min  Max 

Age (years)  120 61.8 57.0 to 65.5 44.9  71.3 
Height (cm)  120 162 157 to 166 141  178 
Weight (kg)  120 75 66 to 86 44  136 
Body Mass Index (BMI, kg/m2)  120 28.5 25.9 to 31.8 18.3  49.4 
<25 (N, %)  26 22%    
25‐30 (N, %)  53 44%    
>30 (N, %)  41 34%    

Age at menarche (years)  120 13 12 to 14 9  18 
Age at menopause  (years)  120 491 46 to 521    
Natural menopause  57 50 48 to 52 25  60 
Hysterectomy age  64 42.5 37 to 50.5 28  62 
Ovarian oblation age  40 45 38.5 to 51.5 28  62 

Nulliparous (N, %)  8 7%    
Age at first birth (years)  112 22 20 to 25 16  35 
Previous HRT Use (N, median (%))  74 60 (62%) 18 to 108 1  361 
Smoking Status  120    
Never (N, %)  69 58%    
Current (N, %)  11 9%    
Ex‐smoker (N, %)  40 33%    

Previous Oral Contraceptive use (months)  112 90 48 to 120 1  528 
Previous participant in IBIS‐I (N, %)  68 57%    

N– number of participants; SD– standard deviation; Q1– first quartile; Q3– third quartile. 
1 Values shown for age at menopause include mean imputed age at menopause for 27 participants 
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Median age at randomisation for the CMN participants (~62) was slightly older than the median 

age for the entire cohort of IBIS-II participants (~59.5 years, n=3864), Table 3-1 [26].  Median 

height was comparable for the CMN and entire IBIS-II cohort (~162cm), however median 

weight (74.5 vs 72 kg) and the proportion of participants with BMI ≥ 25 were higher for CMN 

participants.  Age at menarche and menopause were similar, however age at first birth (22 vs 24 

years) and the proportion of non-parous participants (7% vs 17%) was lower for the CMN 

cohort.  Previous HRT use was higher for CMN participants (62% vs 47% of the entire cohort). 

 

All IBIS-II participants are at approximately double the risk of BC compared to their same-aged 

peers.  Although not every entry criteria for the IBIS-II trial utilised family history of breast or 

ovarian cancer to assess BC risk, all 120 CMN IBIS-II participants who contributed 

mammograms to this project had at least one first or second degree relative with breast or 

ovarian cancer (OC).  The majority of the 120 CMN participants had one (n=41) or two (n=46) 

relatives affected by BC or OC; twenty-four had three, and nine had four or five.  Total number 

and measures of central tendency for the number of relatives with BC and OC, stratified by 

familial relationship, for the CMN participants are listed in Table 6-5.  

 
  Table 6‐5 Number of relatives affected by breast or ovarian cancer, and age of diagnosis 

Family History of Breast 
or Ovarian cancer 

N 
Total
# 

Average # per 
participant (SD) 

Min  Max 
Mean age

at diagnosis (SD) 

Breast Cancer –  
   1st degree relatives 

112  146  1.3 (0.6)  1  3  51.5 (12.5) 

Breast Cancer – 
   2nd degree relatives 

61  93  1.5 (0.8)  1  4  61.2 (19.0) 

Ovarian Cancer – 
   1st degree relatives 

4  4  1  1  1  55 (13.5) 

Ovarian Cancer – 
   2nd degree relatives 

2  2  1  1  1  82 (24.0) 

N–number of participants; Total #–total number of 1st and 2nd degree relatives; SD–standard deviation 

 

Of the one-hundred and twenty IBIS-II participants from the Calvary Mater Newcastle hospital 

who contributed mammograms to the CMN MD and AI study, 339 mammograms were 

collected from 85 mammographic episodes from 85 participants for Aim 3.  Baseline 

mammograms were taken at a variety of institutions, including the Calvary Mater Newcastle.  
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Characteristics of the baseline mammograms are tabulated in Table 6-6.  Baseline 

mammography occurred ≤ 3months prior to randomisation for the majority of women.  

Approximately half of the baseline mammograms were film mammograms.  

 

Median (Q1 to Q3) age at randomisation and BMI differed only slightly for the 85 CMN IBIS-II 

participants with baseline mammograms compared to the entire cohort of 120 participants; for 

the 85 participants with baseline mammograms, median age at randomisation was 61.5 (56.2 to 

65.4), whilst median BMI was 28.6 (26.4 to 31.6). Distributions for other covariates were also 

similar. 

 
Table 6‐6 Baseline breast density parameters for the 85 CMN IBIS‐II Participants with Baseline 
mammograms1* 

Parameter  Mean  SD  Median 
25th to 75th percen‐
tiles (Q1 to Q3)  

Min  Max 

Months, baseline mammo‐
gram to randomisation** 

‐3.5  3.2  ‐2.3  ‐5.5  to ‐1.0  ‐11.7  2.5 

   Film (42 women)  ‐4.5  3.2 ‐4.3 ‐6.7 to ‐1.9 ‐11.7 ‐0.1 
   Digital (43 women)  ‐2.5  3.0 ‐1.3 ‐3.3 to ‐0.7 ‐10.0 2.5 
Percent Density (PD, %)  18.9  14.1 17.7 8.4 to 26.6 0.26 80.8 
   Film (42 women)  23.7  15.8 24.2 11.9 to 29.5 0.87  80.8 
   Digital (43 women)  14.2  10.2 14.3 6.6 to 18.9 0.26 51.5 
Dense Area (mm2)  3346  2660 2755 1438 to 4759 57 13215 
   Film (42 women)  4030  2986 3535 1673 to 5850 123 13215 
   Digital (43 women)  2677  2127 2135 1054 to 4045 57 8797 
Breast Area (mm2)  18724  6918 16832 14055 to 21853 7455 42592 
   Film (42 women)  17960  6554 16460 13347 to 20336 7823 38480 
   Digital (43 women)  19471  7253 17216 14437 to 23523 7455 42592 
Adipose Area (mm2)  15378  6887 13720 10617 to 19278 3213 37781 
Percent Adipose (%)  81.1  14.1 82.3 73.4 to 91.6 19.2 99.7 

1 The measures of central tendency for PD, DA, BA, AA and PA were calculated for the average of each 
MD parameter for each baseline episode (e.g. n=85 for calculations for all 85 participants). Episodes 
versions comprise x42 film, x28 KE52, x12 KE54 and x1 unknown digital version. 
* The baseline characteristics such as randomisation age and BMI for participants with baseline 
mammograms do not differ substantially from the baseline characteristics of all participants. 
** All baseline mammography occurred up to 12 months prior to or on the date of randomisation, bar 2 
participants whose baseline mammograms were taken 10 days and 2.5 months post‐randomisation 

 

When the number of relatives was weighted according to closeness of the relationship with the 

participant (i.e. first or second degree relative), most participants (98 of 120) had an approx.-

imate BC risk equivalent of 1 to 2 first degree relatives, Table 6-8.  With the exception of the 

0.5 category, the decrease in frequency of participants in each category shows an almost linear 
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relationship with weighted number of relatives, Table 6-8 (graph not shown); in contrast, the 

relationship between (non-weighted) number of relatives and frequency is less linear, Table 6-7.  

 
Table 6‐7 Number of relatives with a history of BC and/or ovarian cancer 

Number of relatives  1 2 3 4  5

All 120 CMN participants  41 46 24 6  3
Only participants with baseline 
mammograms (n=85) 

33  31  14  6  1 

 

Table 6‐8 Weighted number of relatives with a history of BC and/or ovarian cancer* 

Number of relatives  0.5 1 1.5 2.0 2.5 3.0  3.5 4

All 120 CMN participants  3 39 32 27 10 7  ‐‐  2
Only participants with baseline 
mammograms (n=85) 

3  30  21  17  8  5  ‐‐  1 

* 0.5 for each second degree relative, and 1.0 for each first degree relative 
 
 
 

6.4.3 Baseline PD, DA, BA and AA analysis 

6.4.3.1 Assessment of correlation and collinearity among outcomes and covariates 

The expected relationships between the MD parameters and potential covariates described in 

Chapter 2 of this thesis generally held true. For example, age at randomisation, weight, BMI, 

age at first birth, were inversely associated with PD and DA.  An inverse relationship between 

duration of HRT (in months) and baseline PD and DA was noted; this coincided with a positive 

relationship between duration of HRT and baseline BA and AA.  Duration of HRT was also 

significantly and positively related to randomisation age (older women have taken HRT for 

longer).  Collinearity testing did not indicate significant collinearity of HRT duration with other 

continuous parameters. 

BA and AA differed by smoking status: BA and AA for never smokers was smaller than BA 

and AA for current smokers, who in turn had smaller than BA and AA than ex-smokers (never < 

current < ex-smokers).  PD/DA was lower for ex- and never smokers, and higher for current 

smokers. The interrelationship of smoking with height, weight and age largely explain the 

apparent relationships of the MD parameters with smoking status.  BMI was highest for ex-

smokers, lowest for current smokers and in-between for never smokers, which was potentially 
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due to the influence of smoking on appetite and hence weight.  Current smokers also tended to 

be younger and taller than their non- or ex-smoking counterparts.  

 

6.4.3.2 Assessment of correlation and collinearity among explanatory variables 

As for smoking status described above, many of the covariates were interrelated; however most 

interrelationships between covariates were weak.  For instance, a line of best linear fit overlaid 

on scatterplots of randomisation age and BMI, randomisation age and BMI, and randomisation 

age and age at first birth revealed a weak inverse relationship between randomisation age and 

these other covariates.  However when the scatter plots were viewed without the guidance of 

linear best fit they showed little relationship between these (continuous) covariates. During 

graphical comparison of continuous parameters with categorical parameters, BMI was also 

found to be lower for non-parous participants compared to BMI for parous participants. 

Use of the collin function yielded VIFs of <1.5, tolerances >0.65 and condition indices <30 (for 

all dimensions except the last) for the following set of continuous parameters: randomisation 

Age, BMI, age at menarche, age at first birth, menopause age, length of HRT in months, length 

of oral contraceptives in months, and weighted number of relatives with OC/BC.  When the  

categorical parameters smoking status, mammogram Version, CC vs MLO, right vs left 

mammogram, and follow up in months,  were added to the collin test, VIFs were <1.4, 

tolerances >72%, and condition indices <30 for all but the last dimension.  This indicated 

significant collinearity was not present for these sets of parameters. 

 

Use of the coldiag2 test for collinearity amongst categorical parameters (parous status, weighted 

number of relatives, smoking status, mammogram Version, CC vs MLO, right vs left) yielded a 

maximum condition index of 28.  This condition index of 28 had variance-decomposition 

proportions >0.3 for the constant (0.94) and mammogram Version (0.75).  The other condition 

indices were <13.  This indicated that significant collinearity was not present for this set of 

categorical parameters. 
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6.4.4 Simple regression of average baseline MD parameters vs baseline 
covariates 
 

The results of the simple regression for each baseline covariate and MD parameter (PD, DA, 

BA, AA), and with square root transformations of each MD parameter are tabulated in Table 

6-9, below. 

 

Age like BMI is typically a strong confounder of breast density which has an inverse 

relationship with PD and DA.  A significant negative relationship was found between age at 

randomisation and PD and DA assessed from digital mammograms, however the relationship of 

age with PD and DA was non-significantly positive for film mammograms.  Omission of all 

three women with high PD (≥50%)— two with baseline film mammograms— strengthened the 

all mammogram inverse relationship with PD to –0.44, p=0.054, R2 5%. The film mammogram 

coefficient increased non-significantly to –0.25. 

 

Two strong confounders of MD, BMI and weight, were consistently and significantly associated 

with PD, BA and AA, both for the all mammograms relationship [i.e. both Types of 

mammograms—film and digital] and within each Type (all expected). The association was 

negative for PD because PD tends to decrease as weight increases, and positive for BA and AA 

because breast size tends to increase with weight and height.  DA did not show a significant 

relationship with BMI or weight. 

 

As a single parameter, weight explained about 30 to 60% of the total variability of BA and AA 

for film, digital and all mammograms (R2 values ranged from 0.31 to 0.58).  The explanatory 

relationship was stronger for digital mammograms than for film mammograms (50 to 60% for 

digital vs 30 to 40% for film).  The percentage of variability in PD explained by weight was 

stronger for film mammograms however (16 to 20%) than for digital (7%).None of the relation-

ships tested (PD, DA, BA & AA, for all mammograms and by Type) were significantly 

associated with height.  The all mammogram relationship as well as the within-Type  
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Table 6‐9 Simple regression, Baseline Average MD parameters with established confounders & potential covariates 

Covariate  N 
PD (%)  PD sqrt DA (mm2) DA sqrt BA (mm2)  BA sqrt AA (mm2) AA sqrt

 β  R2   β R2 β R2 β R2 β R2 β R2 β R2 β R2

Randomisation Age  
years (yr) All mmgs 

85  ‐0.251  0.01  ‐0.05  0.02  ‐511  0.01  ‐0.6  0.17   26  <0.001   0.17  0.002   76  0.004   0.3  0.004 

Film‐screen  42   0.141  0.002   0.002 <0.001 431 0.01 0.14 0.001 105  0.01 0.4 0.006 62 0.002 0.2 0.001
Digital (CR)  43  ‐0.6*  0.13  ‐0.09* 0.15 ‐127* 0.13 ‐1.3* 0.13 ‐8 <0.001 0.11 0.001 120 0.01 0.6 0.02
KE52  28  ‐0.7*  0.23  ‐0.10* 0.21 ‐125* 0.17 ‐1.3* 0.16 134  0.01 0.6 0.02 259 0.05 1.1 0.06
KE542  12  ‐0.3  0.03  ‐0.04* 0.05 ‐85 0.07 ‐0.9 0.08 ‐272  0.04 ‐0.7 0.03 ‐187 0.03 ‐0.5 0.02
Fuji (none)  0  ‐‐  ‐‐  ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

BMI (kg/m2)  85  ‐0.9**  0.11  ‐0.13** 0.15  ‐41  0.01  ‐0.7  0.03  932***  0.48   3.2***  0.47   973*** 0.53   3.7***  0.50 

Film‐screena  42  ‐1.4*  0.14  ‐0.19** 0.21 ‐120 0.03 ‐1.3 0.06 975***  0.40 3.5*** 0.42 1096*** 0.48 4.3*** 0.47
Digitala  43  ‐0.6*  0.10  ‐0.09* 0.13 13 0.001 ‐0.2 0.003 900***  0.54 3.0*** 0.52 887*** 0.60 3.2*** 0.58
KE52  28  ‐0.6*  0.18  ‐0.13** 0.25 ‐25 0.01 ‐0.8 0.008 887***  0.48 3.2*** 0.48 912*** 0.55 3.4*** 0.54
KE54

2
  12  ‐0.5  0.14  ‐0.05 0.10 52 0.03 0.4 0.02 924**  0.62 3.0** 0.59 871*** 0.75 3.1*** 0.72

Height (cm)  85  ‐0.2  0.01  ‐0.01  0.001  ‐8  <0.001   0.12  0.001   132  0.02   0.5  0.02   140  0.02   0.6  0.03 

Film‐screen  42  ‐0.5  0.04  ‐0.05 0.03 ‐43 0.01 ‐0.4 0.01 124  0.02 0.4  0.01 167 0.02 0.7 0.04
Digital  43   0.2  0.01   0.04 0.04 41 0.02 0.7 0.06 124  0.01 0.5 0.02 83 0.02 0.4 0.01

Weight (kg)  85  ‐0.3**  0.11  ‐0.04** 0.13 ‐14 0.01 ‐0.2 0.01 302***  0.45 1.0*** 0.44 316*** 0.49 1.2*** 0.48
Film‐screena  42  ‐0.4**  0.16  ‐0.06** 0.20 ‐40 0.04 ‐0.4 0.06 257***  0.31 0.9*** 0.32 297*** 0.39 1.2*** 0.39
Digitala  43  ‐0.2  0.07  ‐0.02 0.07 12 0.01 0.07 0.003 331***  0.56 1.1*** 0.54 319*** 0.59 1.2*** 0.58

Menarche (years)  85   0.7  0.01   0.10  0.01   166  0.01   1.5  0.01  ‐117  <0.001  ‐0.3  <0.001  ‐283  0.005  ‐0.9  0.003 

Film‐screen  42   0.9  0.01   0.16 0.02 346 0.04 3 0.04 203  0.003 0.8 0.004 ‐143 0.001 ‐0.09 <0.001
Digital  43  ‐0.9  0.02  ‐0.11 0.01 ‐213 <0.001 ‐2 0.02 ‐243  0.003 ‐0.7 0.002 ‐30 <0.001 0.08 <0.001

Nulliparous – yes 
(parous ref) 

85  ‐5  0.007  ‐0.5  <0.001  ‐1249  0.01  ‐11  0.01  ‐3284  0.01   ‐12  0.01  ‐2035  0.005  ‐7.6  0.005 

Age at First Birth (yr)  80   0.6  0.02   0.06 0.02 153* 0.05 1.2 0.05 226  0.02 0.7 0.01 73 0.002 0.2 0.001
Film‐screen  42  ‐0.1  <0.001  ‐0.01 0.001 10 <0.001 ‐0.2  0.001 19 <0.001 ‐0.11 <0.001 9 <0.001 ‐0.05 <0.001
Digital  38   0.8*  0.12   0.11* 0.10 235** 0.22 2.1** 0.18 413  0.06 1.4 0.06 177 0.01 0.6 0.02

Menopause (years) 
Natural+ovariectomy7  67   0.7**  0.12   0.10** 0.16 135** 0.13 1.4*** 0.18 ‐28 <0.001 ‐0.06 <0.001 ‐163 0.03 ‐0.6 0.03
Film‐screen  32   0.5  0.02   0.04 0.01 82 0.02 0.5 0.02 ‐22 0.001 ‐0.003 <0.001 ‐104 0.01 ‐0.4 0.008
Digital  35   0.5**  0.19   0.09** 0.24 118** 0.23 1.4** 0.30 51 0.003 0.2 0.004 ‐66 0.006 ‐0.2 0.004
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Covariate  N 
PD (%)  PD sqrt DA (mm2) DA sqrt BA (mm2)  BA sqrt AA (mm2) AA sqrt

 β  R2   β R2 β R2 β R2 β R2 β R2 β R2 β R2

Reported+imputed7  85  0.5  N/A   0.07* N/A 93 N/A 0.98* N/A 8.5  N/A 0.06 N/A ‐84 N/A ‐0.32 N/A
Film‐screen  42  0.2  N/A   0.005 N/A 30 N/A 0.12 N/A 52 N/A 0.23 N/A 21 N/A 0.06 N/A
Digital  43  0.4  N/A   0.08* N/A 95 N/A 1.2* N/A 33 N/A 0.14 N/A ‐62 N/A ‐0.18 N/A

HRT ever v never (ref)  85  ‐1.0  0.001  ‐0.09 0.001 ‐91 <0.001 ‐0.77 <0.001 232  <0.001 0.9 <0.001 322 <0.001 1.4 0.001
HRT ever (months)  54  ‐0.04  0.04  ‐0.01 0.07 ‐5.6 0.02 ‐0.06 0.04 14 0.03 0.06 0.03 20 0.05 0.08 0.06
Film‐screen  26   0.04  0.03   0.01 0.04 11.2 0.05 0.1 0.07 8 0.01 0.04 0.01 ‐3 0.001 0.006 <0.001
Digital  28  ‐0.06**  0.24  ‐0.01** 0.27 ‐10.8* 0.22 ‐0.11** 0.23 14 0.03 0.06 0.04 25 0.10 0.10 0.11

OC ever vs never (ref)   85   3.2  0.003   0.36 0.003 377 0.001 4.6 0.002 1255  0.002 4.1 0.002 878 <0.001 2 <0.001
OC ever use (months)  80   0.004  <0.001   <0.001 0.002 2 0.003 0.02 0.007 10 0.01 0.03 0.01 8 0.01 0.03 0.01
Film‐screen  40   0.006  0.001  <0.001 0.003 ‐0.3 <0.001 0.005 <0.001 ‐4 0.003 ‐0.01 0.002 ‐3 0.002 ‐0.1 0.001
Digital  40   0.02  0.01   0.003 0.02 8 0.07 0.08 0.07 31 0.09 0.1 0.09 23 0.05 0.08 0.05

Smoking‐ never (ref)  44   ref.  0.01   ref. 0.01 ref. 0.02 ref. 0.02 ref.  0.01 ref. 0.01 ref. 0.01 ref. 0.01
Current  9   2     0.39 1176 9.3 1840    6.1 664 3.4
Ex‐smoker  32  ‐2    ‐0.22 ‐100 ‐0.6 1333    5.6 1432 6.8

IBIS‐I yes (vs no ref)  85  ‐2.4  0.007  ‐0.22 0.005 ‐123 <0.001 ‐1.6 0.001 606  0.002 2 0.002 729 0.003 3.5 0.004
Number of relatives 
with BC or OC 

85   1.6  0.01   0.12  0.005   222  0.007   1.7   0.005   403  0.003   1.4  0.003   180  0.001   0.09  <0.001 

Weighted # relatives with BC or OC as a continuous parameter: First degree = 1; Second degree = 0.5 (min 0.5 to 4.0 max)
All mammograms  85   0.5  0.02   0.05 0.009 55 0.005 0.42 0.004 ‐120  0.004 ‐0.4 0.003 ‐175 0.008 ‐0.8 0.01
Film‐screen  42   1.33  0.08   0.12 0.06 1253 0.02 0.9 0.02 ‐539  0.08 ‐1.8 0.07 ‐665*3 0.11 ‐2.7* 0.12
Digital  43   0.3  0.01   0.03 0.006 70 0.01 0.6 0.01 210  0.01 0.8 0.01 140 0.005 0.5 0.005

Weighted # relatives with BC or OC as a categorical parameter
One 1st degree (ref)  30   ref.  0.06  ref. 0.07 ref. 0.05 ref. 0.05 ref.  0.13 ref. 0.13 ref. 0.18 ref. 0.15
One 2nd degree  3  ‐14    ‐2  ‐1981 ‐16 12894**    43** 14875*** 52
One 1st + one 2nd  21  ‐3    ‐0.8 ‐891 ‐11 975    7 3219 11
Two 1st  17  ‐1    ‐0.2 ‐446 ‐5 ‐1640    ‐3 158 ‐1.4
One 2nd + two 1st  or 
more relatives 

14   3     0.1     525     2     417     6     1244     3   

Mammogram Type –
film (ref) 

42   ref.  0.12   ref.  0.10   ref.  0.07   ref.  0.06   ref.  0.01   ref.  0.01   ref.  0.04   ref.  0.05 

Digital  43  ‐9.5  ‐‐  ‐1.1** ‐‐ ‐1353* ‐11* 1511    5.2 ‐‐ 2864 12* ‐‐
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Covariate  N 
PD (%)  PD sqrt DA (mm2) DA sqrt BA (mm2)  BA sqrt AA (mm2) AA sqrt

 β  R2   β R2 β R2 β R2 β R2 β R2 β R2 β R2

Mammogram 
Version5‐ film (ref) 

42   ref.  0.13  ref.  0.10   ref.  0.08   ref.  0.07  ref.  0.02   ref.  0.02   ref.  0.05   ref.  0.16 

KE52  28  ‐10.3  ‐‐  ‐1.1** ‐‐ ‐1571* ‐‐ ‐13* ‐‐ 1521  ‐‐  5 ‐‐ 3092 ‐‐ 13* ‐‐
KE54  12  ‐9.0  ‐‐  ‐0.9 ‐‐ ‐1040 ‐‐ ‐8 ‐‐ 2270  ‐‐  7 ‐‐ 3308 ‐‐ 13 ‐‐
Fuji  0  ‐‐  ‐‐  ‐0.7 ‐‐ ‐‐ ‐‐ ‐8 ‐‐ ‐‐ ‐‐  ‐1.3 ‐‐ ‐‐ ‐‐ ‐0.5 ‐‐

Comparison of individual mammograms: 4 per baseline episode (not MD averages of each follow up) 

MLO mmgs6 v CC (ref)  339  ‐1.06  0.001  ‐‐  ‐‐ ‐85 <0.001 ‐‐ ‐‐ 731  0.003 ‐‐ ‐‐ 817 0.003 ‐‐ ‐‐
L. mmgs6 v right (ref)   339   0.02  <0.001  ‐‐  ‐‐ 42 <0.001 ‐‐ ‐‐ 229  <0.001 ‐‐ ‐‐ 188 <0.001 ‐‐ ‐‐
Mmg View6, RCC (ref)  85   ref.  0.001  ‐‐  ‐‐ ref. <0.001 ‐‐ ‐‐ ref.  0.003 ‐‐ ‐‐ ref. 0.004 ‐‐ ‐‐
LCC  85  0.006  ‐‐  ‐‐  ‐‐ 0.8 ‐‐ ‐‐ ‐‐ 274  ‐‐  ‐‐ ‐‐ 273 ‐‐ ‐‐ ‐‐
RMLO  85  ‐1.1  ‐‐  ‐‐  ‐‐ ‐126 ‐‐ ‐‐ ‐‐ 775  ‐‐  ‐‐ ‐‐ 900 ‐‐ ‐‐ ‐‐
LMLO  85  ‐1.0  ‐‐  ‐‐  ‐‐ ‐43 ‐‐ ‐‐ ‐‐ 964  ‐‐  ‐‐ ‐‐ 1007 ‐‐ ‐‐ ‐‐

 y, yr years; ref. denotes the reference category;  Bold indicates the coefficient (β)p‐value is less than or equal to 0.1;  * p<0.05;  ** p<0.01; *** p<0.001;  
a R2 is similar (±1%) if the participant with PD≥75% (n=1) is omitted from the models.  R2 was slightly more affected (by up to ±3%) if participants with PD≥50% (n=3) are 
omitted from the models; e.g. the PD and weight model R2 changed slightly: the film‐only model R2 decreased –3 to 17% and digital only model R2 decreased –2 to 5% 

1 If a single influential episode with PD≥75% is excluded (outlier on residual vs fitted plot), the magnitude of the coefficient (β) increases, R2 increases and the sign is negative. 
2 Baseline KE54 are few. Hence sub‐group comparisons are subsequently made for mammogram Type only; NB: three digital baseline mammograms were of Version ‘other’ 
3 Relationship decreases (smaller coefficient (0.7) & R2, p=0.24) when the influential participant with PD≥75% is omitted 
4 Weighted number of relatives encompasses equivalent risk combinations. Women with one 2nd degree relative not used as reference category due to small cell size (n=3) 
5 Three mammograms of Version ‘other’ omitted from the comparison 
6 All baseline mammogram measurements utilised (4 views/episode), not the averages of all four Views of PD, DA, BA, & AA for each episode 
7
 Natural menopause and ovariectomy age reported at baseline. Age at menopause imputed for women with date known for only for hysterectomy.
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relationships for film and digital mammograms with height were non-significantly but 

consistently associated with larger overall BA as well as AA (i.e. the regression coefficients (βs) 

for BA and AA were positive).   

 

The overall (combined film+digital) relationship between PD (%) and height was non-

significantly negative (–0.2 % for each 1 cm increase in height).  The all mammograms 

relationship was comprised of a non-significant negative relationship between PD and film 

mammograms (–0.5) and a non-significant positive relationship for digital mammograms (0.2).  

Omission of the three women with high baseline PD attenuated the relationship for film 

mammograms with PD and DA (the coefficient decreased in size to –0.13 and R2 reduced to 

0.006).   

 

The all mammogram relationship between menarche and PD & DA was non-significantly 

positive but within-Type relationships differed.  Film showed a non-significant positive 

relationship, whilst the relationship for digital mammograms was non-significantly negative.  R2 

for PD and DA ranged from ~1 to 4%, whilst age at menarche provided little explanation for the 

variability in BA and AA (R2 0.5% or less). 

 

Age at first birth (n=80) was significantly (p=0.031) and positively associated with digital 

baseline PD, but non-significantly and inversely associated with film mammograms.  When the 

three women with high baseline PD (≥50%) were omitted from the simple regression equations, 

the association was non-significant but positive for film mammograms and marginally non-

significant for all mammograms (p=0.065, β=0.61).  R2 for all mammograms also increased to 

~5% (n=77 women). The relationship for DA strengthened with omission of the high PD 

women: the coefficient for DA (mm2) became 165, p=0.014 with an R2 of 8% for the all 

mammograms regression. The relationship for PD and DA remained non-significant and inverse 

for nulliparous women, with or without women with high PD in the model. A positive 

relationship was seen for both PD and DA with menopausal age, for all mammograms and 
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within each Type.  The relationship was stronger for women with known age at menopause 

(natural or via ovariectomy) than for imputed + known age at menopause, and both stronger and 

significant for digital mammograms vs film mammograms.  

 

Ever use of HRT was not significantly associated with higher or lower PD or DA in this dataset, 

and its explanatory strength for the variability in any of the MD parameters was very low (R2 

~0.001( ~0.1%)).  Univariable HRT duration had a stronger explanatory relationship with most 

MD parameters (R2 from 2 to 27%) and was significantly associated with lower PD and DA for 

digital mammograms.  HRT duration was also associated with an non-significant increase in 

AA (p=0.092) for all mammograms. Omission of the three women with high baseline PD 

increased the explanatory power of HRT duration for both all and film-only mammograms, with 

increases of R2 to 5% and 8% respectively. The coefficient for all mmgs decreased slightly to –

0.033, but p-value also increased to 0.097. 

 

Past OC use had a very low explanatory relationship with all MD parameters (0.2% or less) as 

well as a non-significant and positive association.  OC duration tended to have a positive non-

significant association with the MD parameters, but similarly had very low R2 values for all 

regression relationships except for digital mammogram-only models.  Whilst still non signifi-

cant, DA, BA and AA had coefficients of ~0.5 and R2 of 5 to 7% for digital mmgs.  Omission of 

the three women with high MD changed the coefficients slightly but non-significantly; for in-

stance DA (mm2) had a non-significant coefficient of 0.8 and R2 of 0.001 (film mammograms). 

In this dataset, current smokers tended to have non-significantly higher PD and DA but non-

significantly higher BA and AA than never smokers.  Former smokers had non-significantly 

lower PD and DA but non-significantly higher BA and AA than never smokers.  The 

explanatory relationship of smoking and the MD parameters was low (R2 ~1%).   

 

Neither total number of relatives nor weighted total number of relatives (1 for first degree and 

0.5 for second degree) was associated significantly with PD or DA, although R2 was around 8% 
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for PD and the (non-significant) associations for all, film and digital mammograms were 

positive.  The relationship of weighted number of relatives as a continuous parameter with PD 

in film mammograms was attenuated if the woman with the highest PD (~80%) or all three 

women with high PD ≥50% were omitted from the regression model.  

 

One of the assumptions for linear regression is homoscedasticity of the residuals.  The right 

skewed distributions of the untransformed MD parameters, e.g. high PD for only a few 

individuals in the dataset, created right skewed residual distributions.  Log transformation of PD 

and DA produced residual plots with a left skew, whilst square root transformation of PD, DA, 

BA and AA produced the best approximation of a normal distribution for both the dependent 

variable and model residuals.    

The relationship between the distribution of the dependent variable and the distribution of the 

regression residuals is demonstrated for PD in Figure 6-4. Frequency histograms of the 

distributions for untransformed baseline PD (in %, ranging from 0.3% to 81%, Table 6-6, 

n=85), square root transformed baseline PD (ranging in value from 0.5 to 9) and natural log 

transformed PD (ranging in value from –1.4 to 4.4) are shown in the top row of the figure.  The 

lower row of Figure 6-4 displays scatter plots of the residuals (y-axis) vs the PD predicted 

values (x-axis) from simple regression models of BMI and the different transformations of PD. 

To meet model assumptions of homoscedasticity, the residuals should be evenly scattered 

around the value of 0 on the y-axis.  Residuals from the square root transformation of PD (lower 

row, middle column) are approximately evenly scattered around 0, however the residuals for 

untransformed PD (lower row, left column) show a right skew (the residual values >20%, which 

were generated for participants with observed baseline PD >40%). The distribution of the 

residuals from the regression model of untransformed PD hence mirrors the distribution of the 

dependent variable of the model.  Similarly, the left skew of the residuals from the regression 

model with natural log transformed PD reflects the left skew of the dependent variable (right 

column, Figure 6-4). 
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Figure 6‐4 PD distribution histograms (upper row), and simple regression residuals vs predicted 
(fitted) plots for untransformed PD, square root transformed PD, and natural log transformed PD 
The distribution of the dependent variable in the regression models (upper row) is reflected in the 
distribution of the residuals (y‐axis) vs PD predicted values (x‐axis) in the scatter plots of the lower row.  
Whilst the residuals are scattered evenly and approximately normally around 0 for the square root 
transformation of PD (middle column), the residuals are skewed to the right and left, respectively, for 
the regression models of untransformed and natural log transformed PD (left and right columns). 
 
 
 

6.4.5 Simple regression, different categorisations AFB & OC, HRT 
duration 
 
The coefficients for the simple regression models utilising the re-categorisations of AFB, OC 

duration and HRT duration are presented in Table 6-10.  Significant differences in DA were 

found between younger AFB vs older AFB for the AFB ≥ 26 (p=0.027) and AFB ≥ 30 

(p=0.004) categories; the p-values for the same relationships for square root transformed DA 

were very similar to those for untransformed DA: p=0.031 for AFB ≥ 26, and p=0.009 for AFB 

≥ 30 (compared to younger AFB).  There was some evidence (p=0.078) of a difference in 

square root transformed PD for AFB ≥ 30 vs AFB < 30.  A possible dose-response trend for 

increasing PD (p=0.092) and DA (p=0.046) with increasing AFB was noted for the quintile 

division of AFB (parous participants only); square root transformed PD (p=0.097) and DA 

(p=0.04) reflected the trend noted for the untransformed MD models.  The PD model p-value 

for the trend decreased (p=0.072) with omission of the woman with the highest PD (~80% PD, 

≤22 AFB), but increased to p=0.174 with omission of three women with PD ≥50% (one of 
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whom had AFB ≥ 30). P-values for square root transformed PD models with these participants 

omitted were similar to those for PD, however p-values for both DA and square root 

transformed DA models for PD <70% and PD <50% only were lower (p= ~0.03).   The 

discrepancy between the PD and DA models is because some participants with high DA had 

mid-range PD (~20 to 40%). No trend was detected for AFB and BA or AA. 

 

Table 6‐10 Simple regression coefficients (β), Baseline avg MD with categorical AFB, OC and HRT 

Covariate  N 

PD 
(%) 

PD
sqrt 

DA
(mm2) 

DA
sqrt 

BA
(mm2) 

BA 
sqrt 

AA 
(mm2) 

AA
sqrt 

β  β β β β β  β  β

Age at First Birth (AFB), years

AFB <20y (ref)  18   ref ref ref ref ref ref   ref  ref
  ≥20 years  62   1  ‐0.14 185 ‐0.8 1272 4.5    1087  3
  Non‐parous  5  ‐4  ‐0.61 ‐1105 ‐11 ‐2298 ‐9  ‐1193  ‐5 
AFB  <26y (ref)  69   ref ref ref ref ref ref  ref  ref
  ≥26 years  11   6  0.85† 1898* 16* 2309 6   411  0.9
  Non‐parous  5  ‐4  ‐0.38 ‐988 ‐8.5 ‐2966 ‐12  ‐1978  ‐7.5 
AFB <30y (ref)  74   ref ref ref ref ref ref   ref  ref
  ≥30 years  6   10  1.3 3200** 25** 3722 13    522  3
  Non‐parous  5  ‐4  ‐0.40 ‐1009 ‐9 ‐3005 ‐11  ‐2000  ‐7
AFB ≤ 20y (ref)  23   ref ref ref ref ref ref  ref  ref
21 to 22  20   3.0 0.2 582 3.3 ‐266 0.09  ‐848  ‐3
23 to 25  26   3.6 0.3 358 2.7 324 0.9  ‐33  ‐1.5
26 to 29  5   2.9 0.5 614 6.7 612 ‐1  ‐2  ‐3
≥ 30  6   12.2

1
1.4

2
3525**

3
27.6*

3
3806 13   281  1.4

Non‐parous 5   0.1 ‐0.2 ‐684 ‐6.5 ‐2921 ‐11  ‐2236  ‐9

Oral Contraceptives (OC), months

OC Never (ref)  5   ref ref ref ref ref ref   ref  ref
  Past user  80    3  0.36 377 5 1255 4   878  2
OC Never (ref)  5   ref ref ref ref ref ref   ref  ref
48 months  20   5.2 0.53 475 5 ‐550 ‐2  ‐1026  ‐6
90 months  17   0.5 ‐0.03 ‐247 ‐2 ‐457 ‐2   ‐211  ‐1.5
120 months 27   3.6 0.46 535 7.0 2171 7   1636  5
≥120 months  16   2.7 0.37 649 7.5 3786 13   3137  11

Hormone Replacement Therapy (HRT), months

HRT Never (ref)  31   ref ref ref ref ref ref   ref  ref
  Past user  54  ‐1  ‐0.09 ‐91 ‐0.8 232 0.9   323  1.4
 HRT never (ref)  31   ref ref ref ref ref ref   ref  ref
18 months  14   0.2 0.17 4 2 573 1   569  1.3
60 months  18   2.3 0.28 630 5 112 0.5  ‐517  ‐2.2
108 months 11  ‐4.3 ‐0.48 ‐1224† ‐10 ‐3739† ‐13  ‐2514  ‐8.4
109+ months  11  ‐4.5 ‐0.66 ‐257 ‐4 3964† 15   4221  17

Bold indicates the coefficient (β) has p≤0.1; ref.  reference category; y years; 
* p<0.05; ** p<0.01; *** p<0.001; † p<0.2†;     
1 p=0.092 for trend (parous only, n=80); p=0.072 for PD<70% (n=79); p=0.174 for PD<50% (n=77);  
2 p=0.097 for trend (parous only); p=0.08 for PD<70%; p=0.18 for PD<50%;  
3 p<0.05 for trend (parous only) 
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The AFB categorisation which was most parsimonious, had the lowest p-value for one or more 

categories and highest R2 was AFB divided at age 30 years. This parameter was selected for use 

in the multivariable models of MD.  

 

Non-linear trends predominated within the quintile (dose-response) divisions of OC and HRT 

use. Thus the binary categories of HRT ever vs never use and OC ever vs never use were chosen 

for utilisation in the MD multivariable linear regression models as the most parsimonious 

representations. 

 

6.4.6 Multivariable regression, avg baseline MD parameters vs baseline 
covariates 
 

During collinearity testing prior to fitting the simple regression models, it was noted that many 

covariates were interrelated.  Relationships were noted between smoking status, age and BMI, 

for example. To account for these interrelationships, multivariable (multiple) linear regression 

was undertaken.  Full models and age- and mammogram Version-adjusted parsimonious models 

containing parameters with p≤0.10 were estimated for the MD parameters.  The results from the 

full and parsimonious (parsimon.) models for all 85 baseline mammograms are listed in Table 

6-11 below.   

 

Coefficients for the multivariable models generally showed the expected sign (e.g. negative for 

randomisation age and BMI in models with PD and DA as the dependent variable).  Use of 

square root transformed PD provided a significant value for age at randomisation for the square 

root PD full (p=0.044) and parsimonious (p=0.031) models, whilst the coefficient for this 

covariate in the untransformed PD models was not significant (e.g. p=0.133 for the PD 

parsimonious model).  With the exception of age at randomisation, coefficients which were 

significant in the untransformed models were also significant in the square root transformed MD 

models.  No additional covariates became significant with use of transformed MD as the  
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Table 6‐11 Multivariable linear regression coefficients, Baseline Average MD with confounders of breast density and other potential covariates 

Covariate 
PD %  PD square root DA mm2 DA square root  BA mm2 BA square root

Full  Parsimon  Full  Parsimon Full Parsimon Full Parsimon Full Parsimon Full Parsimon

ALL MMGS  
85 participants 

 R2 
 31% 

 R2 
 24% 

R2 
37% 

R2

32% 
R2

27% 
R2

26% 
R2

29% 
R2 
23% 

R2

60% 
R2

59% 
R2

59% 
R2

58% 

Age at Rand.  ‐0.33  ‐0.35  ‐0.07* ‐0.06* ‐47 ‐31 ‐0.75 ‐0.53  204 198 0.79* 0.77*
BMI (kg/m2)  ‐0.89**  ‐0.88**  ‐0.13*** ‐0.13*** ‐12 ‐‐ ‐0.52 ‐‐  1086*** 1066*** 3.7*** 3.7***
Menarche (years)   0.33  ‐‐   0.06 ‐‐ 142 ‐‐  1.2 ‐‐  128 ‐‐ 0.57 ‐‐
Menopause (years)   0.32  ‐‐   0.07 0.07 84 83 0.90* 0.82*  92 ‐‐ 0.34 ‐‐
Age at First Birth   
   <30 years 

 ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.   ‐‐   ref.  ‐‐ 

 ≥ 30 years   8.3  ‐‐   0.97 ‐‐ 3293** 3265** 24* 24*  5879** 5825** 20* 20*
Non‐parous  ‐3.1  ‐‐  ‐0.54 ‐‐ ‐82 219 ‐4.5 ‐1.7  2909 1530 8.2 4.3

OC use (months) 
   Never users 

 ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.   ‐‐   ref.  ‐‐ 

   Ever users  ‐0.71  ‐‐  ‐0.33 ‐‐ ‐574 ‐‐ ‐6.9 ‐‐  1152 ‐‐ 2.8 ‐‐
HRT (months) 
  Never users 

 ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.   ‐‐   ref.  ‐‐ 

  Ever users   2.2  ‐‐   0.42 ‐‐ 245 ‐‐ 3.8 ‐‐  ‐2136 ‐2241* ‐7.2 ‐7.8
Smoking‐ never   ref.  ‐‐   ref.  ‐‐ ref. ‐‐ ref. ‐‐  ref.  ‐‐ ref. ‐‐
Current   2.5  ‐‐   0.40 ‐‐ 1539 1581 12 ‐‐  3687 3407 12 11
Ex‐smoker   1.1  ‐‐   0.15 ‐‐ ‐120 ‐145 0.0 ‐‐  ‐1812 ‐1725 ‐5.0 ‐4.8

IBIS‐1 participant 
no (ref) 

‐1.2  ‐‐  ‐0.001  ‐‐  69  ‐‐   1.0  ‐‐  78  ‐‐  ‐0.56  ‐‐       

Mammogram 
Version5‐ film 

 ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.  ‐‐   ref.   ‐‐   ref.  ‐‐ 

 KE52  ‐9.7**  ‐10**  ‐0.99** ‐0.96** ‐1547* ‐1629* ‐12* ‐12*  1176 1060 4.3 3.7
 KE54  ‐6.7  ‐7.4  ‐0.54 ‐0.64 ‐528 ‐626 ‐3.3 ‐6.1  1399 1332 3.9 3.7

Intercept   28   31***     6  6 4977 4141*** 73*  63*** 12382 14922*** 114*** 121***

Bold indicates the coefficient (β) is significant (p≤0.1); Parsimon. column lists significant parameters’ β (age‐adjusted, except BA) 
ref. denotes the reference category;  * p<0.05;  ** p<0.01; *** p<0.001; ‡ p<0.15; † p<0.2;    
R2 values from regression models with average imputed values for menopause age 
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dependent variable in the models. As expected, BMI was not significant in the DA models.  As 

for square root PD, age at menopause is associated with a significant increase in DA. 

 

Whilst HRT duration indicated a possible positive dose-response relationship with BA in simple 

regression (Table 6-10), after controlling for other factors such as BMI and smoking status, 

HRT use was associated with a significant decrease in BA. Removal of smoking status from the 

parsimonious model did not substantially change the coefficient for HRT use (–2071, p=0.074); 

the other coefficients in the model also decreased slightly. 

 

Residuals for the multivariable parsimonious models of PD, DA and BA were right skewed for 

untransformed MD models (heteroskedastic), but not as skewed as the residuals for the simple 

regression models with untransformed PD, DA and BA as the dependent variable.  Residuals 

from the square root transformed multivariable parsimonious MD models were approximately 

normally distributed (homoscedastic). 

 

 

6.4.7 Comparison of parsimonious MI and non-MI models 
 
Comparison of the coefficients from the square root transformed PD MI and non-MI models 

revealed that all parsimonious parameters in the non-MI model continued to meet the pre-

specified criterion for retention in a parsimonious model (p≤0.1).  The coefficients for age at 

randomisation and BMI changed less than 3% (e.g. from –0.065 to –0.063 for randomisation 

age), and the coefficients for mammogram Version changed less than 10%.  The coefficient for 

menopause age was the most affected, changing 35% from 0.069 in the non-MI model to 0.051 

in the properly imputed (MI) model.  The SE for both coefficients was 0.028.  Hence the 

relative change in the age at menopause coefficient was still well within ± one SE limits, despite 

an apparent overestimation in magnitude for the non-MI model coefficient. 
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6.4.8 Differences in MD measurements, by View, Type and Version 
 
As described in Differences in MD measurements, by View, Type and Version,  additional 

comparisons were made to characterise the differences in MD measured on CC vs MLO and 

right vs left mammograms, by mammogram Type and Version.  These comparisons showed the 

CC mammograms had significantly higher PD (~1%, p=0.0009) but significantly lower BA (–

8cm2, p<0.0001) and AA (–3cm2, p<0.0001) on average than PD, BA and AA measured on 

MLO mammograms (Table 10-6). BA and AA were also significantly lower on average for 

right mammograms compared to left mammograms (–4cm2, p=0.002 (BA) and        –3cm2, 

p=0.004 (AA), Table 10-6) however PD did not differ significantly for right vs left Views 

(p=0.88).  DA was non-significantly lower (–0.7cm2, p=0.33) for right compared to left 

mammograms, and non-significantly higher (0.5cm2, p=0.41) for CC vs MLO Views (p=0.41), 

Table 10-6. Wilcoxon’s paired signed-rank test was utilised for all comparisons. 

 

6.4.9 Simple regression of baseline PD with different View combinations 
 

The PD simple regression coefficients for different (single) Views, the average of pairs of 

Views, and the average of all four Views are presented in an appendix (Simple regression of 

baseline PD with different combinations of mammographic Views, Table 10-8).  With the 

exception of models fitted with LMLO View mammograms, coefficients from the 

untransformed PD single View models (RCC, LCC, RMLO) were generally similar (± 10 to 

20%) to those for the all View models of untransformed PD.  The LMLO View model 

coefficients tended to be smaller in magnitude and therefore non-significant when the 

coefficients from models with other View combinations were significant.  Some of the left side 

model coefficients were similarly slightly smaller in magnitude and non-significant compared to 

their four View counterparts. The coefficients for the three different View combinations for log 

transformed PD were similar in both magnitude and significance, as were the coefficients for 

models utilising a square root transformation of PD.  The relationships for both the weaker 

modifiers of MD, such as menarche and age at first birth, as well as stronger modifiers such as 
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age, BMI and weight, did not appear to change with use of one, two or four Views in the PD 

models.  

 

6.5 Discussion 
 
The calculated Breast Area for baseline mammograms (n=85 participants, averaged from 4 

views from 85 baseline episodes, Table 6-6) of 18,724 mm2 (~187cm2) is higher than average 

breast size reported elsewhere.  Slightly younger and thinner cohorts of participants (average 

age ~51to57 years, average BMI ~26) had digitised CC view breast sizes of median 123.7 cm2 

(Q1-Q3: 94.7 cm2 to 65.8 cm2) [177],  74.4 cm2 (average, SD 42.1 cm2) [479], and ~75 cm2 

(average) [192].  

 

Reasons for the larger estimated BA for CMN IBIS-II participants are not clear, as the method 

to calculate area on the IBIS-II mammograms is similar to others [177, 479].  The candidate 

may have over-estimated/been generous whilst outlining the breast during Cumulus evaluation.  

The report listed above with the largest BA used xeromammograms, whose ‘positive’ image has 

a well-defined breast edge [177] . Perhaps the 4.3OD and 4.7OD setting used whilst scanning 

the breast x-rays made the ‘true’ edge of the breast more visible than the film-screen scans used 

in earlier reports.  Median BA for the CMN IBIS-II participants is not too different from median 

BA measured during 82 serial screening CC view mammograms, 145.7 cm2 (Q1-Q3: 109 cm2 to 

198 cm2) [480].  Breast measurements were made along the chest wall, and from the chest wall 

to the nipple.  BA at the 5th percentile was ~77 cm2 whilst it was ~264 cm2 at the 95th percentile. 

Age and BMI were not reported for this study, so it is not possible to take these MD 

confounders into account.  In the US, screening starts from age 40, so it is highly likely the 

women in this study were younger (leading to perhaps, firmer less compressible breasts, with 

possibly lower BMI (also likely to decrease BA)) than the CMN IBIS-II participants. 

 

Both CC and MLO views were used to calculate median BA for the IBIS-II participants, 

however MLO views tend to have a larger BA than CC views [481].   Restriction of the IBIS-II 
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mammograms to solely baseline CC film mammograms (as the average of the RCC and LCC 

views per episode, n=42 episodes) yields a median BA ~20 cm2 smaller: 168 cm2 (Q1-Q3: 127 

cm2 to 205 cm2).  Given that the majority of CMN IBIS-II participants were over age 60 years 

(e.g. they had more compressible breasts) in combination with the slightly higher BMI (~29), 

the larger BA observed compared to other reports is not implausible.  

 

The median DA of ~33.5 cm2 is also higher than earlier reports: 26.4cm2 (Q1-Q3 0.3 cm2 to 

138.0 cm2) [177], 20cm2 (average, 0.8cm2 SD) [479] and 40cm2 (average, 26 cm2 SD) [192], 

whilst median PD (~19%) is fairly typical for women aged ~60 [144, 189].  This implies that 

the calculated areas for BA, AA and DA are overestimated, compared to other studies. The 

calculated # of pixels/mm2 is 400/mm2 for scans using a 50μm pixel spacing (20 ‘pixels’ per 

linear mm); this means each ‘pixel’ is about 0.0025 (1/400) mm2 in size.  However, the expert 

team which developed the Cumulus program report that one pixel was 0.0676mm2 for scans 

made at “50μm spatial resolution” [137]; 0.0676mm2 per ‘pixel’ is larger than 0.0025 

mm2/’pixel’, so use of this latter conversion factor would have (further) increased estimated 

DA, BA and AA.   

 

If area for the IBIS-II mammograms has been overestimated, the (external) generalisability of 

this project’s results for ‘absolute’ measures (DA, BA, AA) will be affected, however results for 

PD (dimensionless) will be unaffected.  Rates of change, such as those discussed in Chapters 7 

and 8 for the absolute measures may also be affected, but less so. 

 

Age is typically a strong confounder of density which has an inverse relationship with PD and 

DA [137].  A significant negative relationship was found between age at randomisation and 

digital mammograms for PD and DA during simple regression, however the relationship of age 

with PD and DA was non-significantly positive for film mammograms, Table 6-9.  This latter 

unexpected relationship may have two possible explanations.  Median age at randomisation was 

61.8 years, hence over half of the women in this dataset were aged over 60 at randomisation.   
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The rate at which PD decreases per annum tends to slow post-menopause [144, 188, 189]; PD 

may even increase in later life [145, 471].  This likely attenuated the typical effects of age upon 

PD and DA for women in this dataset.   

 

Additionally, the result for film mammograms was partly due to one participant whose PD was 

~80% at baseline, very unlike the remainder of participants whose baseline PD was <60%.  

Removal of this participant from the simple regression model for film mammograms yielded a 

non-significant coefficient of –0.2% PD per one year increase in age at randomisation.  

Omission of all three women with high PD (≥50%)— two of whom had baseline film 

mammograms— strengthened the all mammogram model’s inverse relationship with PD to –

0.44, p=0.054, R2 5%. The film mammogram coefficient similarly increased non-significantly in 

absolute value to –0.25. These three participants with high baseline PD also were influential in 

other bivariable relationships with the MD parameters, as described in subsequent paragraphs. 

The relationship between age at randomisation with PD and DA remained inverse for the 

multivariable regression models, Table 6-11, and was significant for the square root transformed 

models of PD (e.g. p=0.028 for the square root PD parsimonious model).  The decreases in PD 

and DA with age for the CMN IBIS-II participants (about –0.5% to –1% , and –0.5cm2 (50mm2)  

to –1cm2 (100mm2) per year, respectively), are similar to others [188, 192, 252], given that the 

decline in PD and DA tends to slow for women aged 60+ years [144].  Age was non-

significantly and positively associated with BA and AA during bivariable regression, Table 6-9, 

and positively associated with BA as well as positively and significantly with square root 

transformed BA during multivariable regression, Table 6-11. 

 

Two other strong confounders of MD, BMI and weight [174], were consistently and 

significantly associated with PD, BA and AA, both for the all mammograms relationship [i.e. 

both Types of mammograms—film and digital] and within each Type (all expected), Table 6-9. 

The association was negative for PD because PD tends to decrease as weight increases, and 

positive for BA and AA because breast size tends to increase with weight and height [178].  The 
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relationship for AA from the CMN IBIS-II population was consistent with another report. Non-

dense area (AA) increased by ~3cm2 per kg (300mm2/kg) [197], but this was much larger than 

the univariable association between non-dense area (AA) and weight in a slightly younger 

cohort (mean 50.5 years (6.2 SD)) of 804 high risk women, 0.08cm2/kg (8mm2/kg).  Similarly, 

the large association between BA and AA and BMI (~900mm2/(kg/m2) = 9cm2/(kg/m2)), is also 

much higher than for the younger, high risk cohort (0.24cm2/(kg/m2)). DA did not show a 

significant relationship with BMI or weight (Table 6-9) which was also consistent with some 

[192] but not all [178, 197] of the MD literature, perhaps because the IBIS-II participants are a 

high risk population. The multivariable regression BMI relationships with PD and BA (Table 

6-11) were consistent in sign and magnitude with their simple regression counterparts (Table 

6-9).   

 

As a single parameter (Table 6-9), weight explained about 30 to 60% of the total variability of 

BA and AA for film, digital and all mammograms (R2 values ranged from 0.31 to 0.58).  The 

explanatory relationship was stronger for digital mammograms than for film mammograms (50 

to 60% for digital vs 30 to 40% for film).  The percentage of variability in PD explained by 

weight was stronger for film mammograms (16 to 20%) however than for digital (7%); this 

implies the R2 differences are not (solely) due to removal of dense area due to digital 

mammogram post processing. The percentage of variability for percent adipose (PA) explained 

by weight was also higher for film only (14%) vs digital only (7%) models (data not tabulated). 

R2 for BMI also showed a similar trend (higher for digital only models of BA and AA, but 

lower for digital only compared to film only for PD and PA). The difference in film vs digital 

R2 for BA and AA vs PD and PA might have resulted because BA and AA are measured in mm2 

and PD and PA are dimensionless parameters which are independent of the size of the breast. 

Removal of the participant with very high baseline PD ≥75% did not change R2 of any MD and 

BMI or MD and weight model by more than ±1%, however omission of all three participants 

with high PD (≥50%) changed R2  for the weight and BMI PD models slightly more (±3%).  

Participants with high PD do not always have high DA relative to other participants, and 
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participants with the lowest PD do not always have the highest weight or BMI.  These complex 

relationships between PD, BA and AA with weight and BMI may have also influenced the 

differing relationships for film vs digital mammograms for weight and BMI.  The opposing 

relationships between the film vs digital R2 for PD vs BA and AA might be also be spurious due 

to the small number of participants utilised in this analysis (n=85). 

 

Height was expected to be positively associated with PD and DA, but to have no relationship or 

possibly an inverse association with BA and AA [174, 192].  This is because density, but not 

necessarily breast size, tends to increase with height.  None of the relationships tested (PD, DA, 

BA & AA, for all mammograms and by film or digital Type) were significantly associated with 

height, Table 6-9).   

 

The inconsistent relationship between PD and height for film vs digital mammograms (Table 

6-9) disappeared when weight was controlled for during regression (multivariable models, data 

not tabulated because BMI was selected for use in the multivariable models).  Similar 

confounding during simple regression appeared to be present for the parameters age at 

menarche, age at first birth, and months of HRT use.  The relationship of MD with height and 

most other confounders of MD is less strong than the relationship for MD with age, BMI and 

weight.  It was not surprising to observe inconsistent and non-significant relationships between 

lesser confounders such as height and the MD parameters in this dataset, especially when the 

distribution of baseline PD and DA differed between film and digital mammograms. 

 

Adjusted R2 adjusts the original R2 for the number of parameters in the model; this provides a 

more complete estimation of the amount of variance of the dependent variable (e.g. PD) 

explained by the independent variable/s.  Although not tabulated, most of the adjusted R2 for the 

regression models were negative (equivalent to 0), emphasising the lack of association between 

most covariates and the average MD parameters at baseline.  

 



Chapter 6 

201 

The MD literature suggests that many significant univariable relationships between PD and BC 

risk factors become attenuated and/or non-significant after adjustment for other factors in 

multivariable analyses.  However, with the exception of the non-significant associations with 

HRT and OC use and ex-smoking status, the direction of the relationship between the PD and 

DA simple regression model coefficients (Table 6-9 and Table 6-10) and the PD and DA 

multivariable regression models (Table 6-11) were generally the same.  The magnitude of the 

coefficients changed between the simple regression and multivariable regression models, 

however (as expected).   

 

Later age at menarche is associated with higher PD and DA compared to earlier age at menarche 

[194] (although later age at menarche is associated with lower BC risk).   The relationship 

between older age at menarche and higher PD may be attenuated for women over age 60 [202]. 

The all mammogram relationship between menarche and PD & DA was non-significantly 

positive but within-Type relationships again differed.  Film showed a non-significant positive 

relationship, whilst the relationship for digital mammograms was non-significantly negative.  

 

Both nulliparity and older age at first birth (AFB) are associated with higher PD and DA [149, 

192, 203]; the association with between PD and DA with age at first birth appears to be 

modified (inversely) by the number of children [191], perhaps particularly so for premenopausal 

women [203]. The association between PD and AFB may be stronger in women over aged 60 

[202].  For this project, AFB was significantly and positively associated with digital baseline 

PD during bivariable regression, but non-significantly and inversely associated with film 

mammograms, Table 6-9.  Although AFB ≥ 30 was significantly associated with PD in simple 

regression models, after adjustment for age at randomisation, BMI and age at menopause, AFB 

≥ 30 did not meet retention thresholds (p≤0.1) for retention. 

 

Nulliparous women tend to have higher PD, DA and lower AA than parous women [177], 

including older first time mothers (e.g. age 26+ [191]  and/or 30+ [192]).  The non-parous 
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women with baseline mammograms (5 participants) in this sample of IBIS-II participants (85 

women) had on average 5% non-significantly lower PD than their parous counterparts during 

simple regression (Table 6-9), and –3% non-significantly lower PD than their counterparts with 

age at first birth <30 years during multivariable regression (Table 6-11).  However, PD was 

inversely associated with increasing parity in the much larger sample of high-risk participants in 

the IBIS-I trial (>100 non-parous women, >800 total participants) [192, 296], so the association 

of lower PD for non-parous women observed for this sample of high-risk IBIS-II participants is 

not likely due to their high-risk status. The average age at first birth for the 80 parous women 

with baseline mammograms was 22.6 (sd 4) years of age; this low average age at first birth is 

associated with lower PD in the general population [202], so the unexpected association of 

higher average PD for parous vs non parous participants is likely due to the small number of 

women in this (baseline) dataset.  The relationship for PD and DA remained non-significant and 

inverse for nulliparous women relative to parous women, with or without the women with high 

PD in the regression relationships. Hence the three women with high PD did not substantially 

alter the observed relationship between PD and parous status, unlike the bivariable relationships 

observed for MD with age and height. 

 

Later age at menopause is associated with both higher MD [177] and increased BC risk [5].  A 

positive relationship was seen for both PD and DA with menopausal age, for all mammograms 

and within each Type.  The relationship was stronger for women with known age at menopause 

(natural or via ovariectomy) than for all women (imputed + known age at menopause), and both 

stronger and significant for digital mammograms vs film mammograms.  

 

Past HRT use does not have a well-defined relationship with MD. PD may be higher for 

premenopausal former HRT users, but not former post-menopausal users compared to never 

users [203], but was associated with lower PD, DA and higher BA in the high risk IBIS-I 

population [192]. Current HRT is positively associated with PD in most populations, e.g. [177], 

especially for post-menopausal women [202, 203]. Combination HRT with estrogen and 
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progestin, in particular, is associated with both higher PD and BC risk [246, 482]. Past use of 

HRT may be associated with higher PD and DA compared to never use [253].  Ever use of HRT 

was not significantly associated with higher or lower PD or DA in this dataset, and the 

proportion of variability explained for any MD parameter was very low (R2 ~0.001, which 

equates to about 0.1% of the variability explained).   

 

Past oral contraceptive use is not a well-defined MD confounder, however OC use and duration 

may be associated with differences in MD [253].  Past OC use had a non-significant and 

positive association, as well as a very low explanatory relationship with all MD parameters (R2 

of 0.2% or less).  OC duration tended to have a positive non-significant association with the MD 

parameters, but similarly had very low R2 values for all regression relationships except for 

digital mammograms.   

 

Smoking status has an inverse dose-response association with PD [483]; however, both current 

and past smoking have a dose-response association with increased BC risk, which is modified 

(positively) by alcohol intake [484, 485]. PD tends to be lowest in current smokers, but also 

lower in former smokers compared to never smokers [192]; this trend might only occur for 

premenopausal, but not post-menopausal, women [203]. In this dataset, current smokers tended 

to have both non-significantly higher PD and DA in the simple regression models (unexpected) 

and non-significantly higher BA and AA than never smokers, Table 6-9.  Past smokers 

however, had non-significantly lower PD and DA compared to never smokers (expected) and 

non-significantly higher BA and AA, Table 6-9.  The bivariable relationships between smoking 

and the MD parameters were very weak (R2 ~1%).   

 

The multivariable, positive relationship between current smoking status and PD, DA and BA 

was unexpected.  Although the p-values for these relationships were not significant (p<0.05), 

the p-values met the predefined criterion of p≤0.1 for retention in parsimonious models of 

untransformed DA and both untransformed and transformed BA (e.g. DA p-value=0.075).  
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Given that the p-value for current smoking status in the multivariable square root transformed 

DA model was >0.1, the slightly stronger relationship between current smoking status and 

untransformed DA is likely due to distortion of the linear relationship caused by the right-skew 

of the untransformed DA distribution.  The unexpected higher PD, DA and BA associated with 

current smoking status could be due to the small sample size, or (for unknown reasons) due to 

the high risk status of the women in the sample.  Given that none of the MD and current 

smoking relationships met the specified p<0.05 criteria for significance, these possible 

relationships are likely due to chance alone.   

 

Smoking status is not a widely utilised confounder of breast density, probably because the 

effects of smoking on MD seem to be primarily mediated through BMI (i.e. via differences in 

weight) and are also possibly modified by age.  It is possible that tobacco utilisation may have 

other effects upon MD as for the confounding which likely exists between smoking and BC risk 

e.g. smoking appears to suppresses estrogen production, which then reduces overall BC risk 

(and probably MD as well) in smokers despite the BC risk increase caused by carcinogens in the 

tobacco smoke.  However the effects of smoking on MD are likely too minimal to impact MD 

differentially in this small dataset— large (hundreds) to very large (thousands) numbers of 

people are needed to ascertain the relationship between a risk factor and an outcome if the 

overall effect is small.  The number of current smokers with baseline mammograms (9 of 85 

women) and within the total sample of CMN IBIS-II participants (11 of 120 total women) is 

small, within this small sample of high-risk women.   The relationship between smoking status 

and changes in longitudinal MD— if examined during modelling of longitudinal MD (Aim 4 

and Aim 5)— will be need to be interpreted with caution due the small sample size. 

 

Family history of BC appears to be associated with higher PD, as suggested by data from a large 

(>140,000 woman) general screening population sample [202]; a stronger family history (i.e. 

more relatives with BC) was also associated with higher PD in another large general screening 

population [233].  This relationship, however, is not consistent in all studies.  The relationship 
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between PD and BC risk appears to be modified by familial risk status in some populations (i.e. 

Asian and Caucasian), as shown in an analysis of approximately 4,000 women from four case-

control studies [237]; although mean PD did not differ between those with and without a (first 

degree) family history of BC in that study, a 10% increase in PD was associated with higher risk 

of BC in women with a family history of BC (32% increase in risk) compared to women 

without a family history of BC (13% increase in risk of BC per 10% increase in PD).   

Additionally, higher PD does not appear to be associated with BRCA status, but (as for the 

general population) within the population of women with BRCA mutations higher PD is 

associated with higher BC risk [244].  The inverse relationship between higher predicted Tyrer-

Cuzick BC risk and lower PD in the high risk IBIS-I population [296] is intriguing.    

 

In this project (the CMN MD and AI study), number of relatives and weighted number of 

relatives (1 for 1st degree and 0.5 for second degree) was used as a surrogate for BC risk.  All 

CMN IBIS-II participants had at least one first or second degree relative affected by BC and/or 

ovarian cancer.  An increase in the number of relatives with BC and/or ovarian cancer was 

associated with non-significantly higher PD and DA for the CMN IBIS-II participants during 

simple regression analyses, whether modelled as a continuous number representing the total 

number of relatives, or total number weighted by first or second degree status (reflecting the 

(average) genetic similarity between the participant and her first vs second degree relatives), 

Table 6-9.   

 

As noted in Table 6-10 for the re-categorised parameters of AFB, OC and HRT, non-linear 

trends predominated within the quintile (dose-response) divisions of OC and HRT use. This 

implied a linear relationship did not exist between duration of OC or HRT and the baseline MD 

parameters for this dataset.  No significant associations were noted for the dichotomous 

divisions of OC or HRT use. Because the relationship was expected (consistent with the 

literature) and it had higher R2 and adjusted R2 values, the AFB parameter with the division at 

≥30 years was selected for use in the multivariable baseline regression model. 
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The relationship between BA and BC risk factors is not well described in the MD literature.  

The simple regression coefficients for menarche, HRT use, ex-smoking and non-parous status 

(Table 6-9) did differ in sign compared to the multivariable regression models of BA (Table 

6-11).  However, the p-values for the BA regression coefficients which differed in sign between 

the simple and multivariable models were not significant, thus it is not surprising that some of 

the simple regression coefficients subsequently differed in sign in the multivariable regression 

model. 

 

Few unexpected relationships were noted amongst the MD parameters (PD, DA, BA & AA) and 

MD covariates via graphical (descriptive) analyses and quantitative collinearity checks.  Most of 

the unexpected relationships during regression analyses became attenuated or were reversed 

with exclusion of the one participant with very high PD (≥75%) and/or exclusion of all three 

participants with high PD (≥50%).  The three participants with high PD often appeared to be 

outliers in graphical analyses and residual checking because they were few in number. Although 

high MD (≥50%) for post-menopausal women is less common in the general post-menopausal 

population compared to lower MD <50% (e.g. Figure 2-9 [137]— where most women aged 50+ 

with PD≥50% also appear to be outliers), the high MD for measured for these women is real.  

Hence the data for these women was retained.  Due to the relatively small sample size in this 

pilot study (the CMN MD and AI study), women with PD ≥ 50% are few in this sample of 

IBIS-II participants.  A larger sample size would likely improve stability of the coefficients 

estimated in the regression models (i.e. reduce bias as well as improve efficiency (smaller SE)) 

and provide better estimates of the relationships between the covariates and MD for the (high 

risk) IBIS-II population.   

 

For both the simple (Table 6-9) and multivariable regression models (Table 6-11), digital 

mammograms were associated with both lower PD and DA than film mammograms. In 

particular, KE52 digital mmgs had significantly lower (square root transformed) PD and 

(untransformed and square root transformed) DA than film mammograms.  BA was also higher 
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for KE52 mammograms compared to film, as was square root transformed AA (significantly so 

in the simple regression model, Table 6-9).  Because PD and DA differed significantly by 

mammogram Type and Version at baseline, they are also likely to differ significantly 

longitudinally.  Therefore these parameters needed to be accounted for during mixed modelling 

of longitudinal MD (Aims 4 and 5). 

 

Compared to log transformation, square root transformation of PD yielded the most evenly 

distributed residuals, Figure 6-4.  The residual diagnostic plots had less heteroskedasticity, 

though this effect appeared to still be present on a number of the simple regression diagnostic 

plots. The square root transformation makes the regression results more difficult to translate 

back into ‘real’ units (e.g. %, mm2) however.  In contrast, regression results from log 

transformation are interpreted as a % change in the original units (if the coefficients are not too 

large), which is straightforward to perform.  Mixed modelling of both untransformed and square 

root transformed PD, DA and BA was undertaken in Aim 4 (next chapter) to compare the model 

outcomes for both the square root transformed and untransformed MD parameters.  Square root 

transformation of BD measures is common transformation applied during BD analysis, e.g. 

[486-488]. 

 

One of the limitations of this study is the population of IBIS-II participants is likely not 

representative of the general female population because these women have at least a 1.5-fold 

risk of BC compared to their same-age counterparts from the general population.  Most of the 

relationships between the BC risk factors and MD described in Chapter 1 and in this chapter are 

for women from general screening populations.  Hence unexpected relationships such as the 

inverse relationship noted between women at high familial risk and PD in the IBIS-I population 

[296] may also be present for IBIS-II participants.  Therefore the relationships modelled in Aim 

3 (this chapter) may only apply to the population of (high risk) IBIS-II participants, but possibly 

may be generalisable to other populations of high risk women.  Median PD for the CMN 

participants (19.3%) was comparable to median PD (18.7%, Q1 to Q3: 8 to 30%) for the subset 
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of post-menopausal women in the Minnesota Breast Cancer Family Study (n=1,284; median age 

62 years (Q1 to Q3: 55 to 58y)) [144]; most women in the Minnesota Breast Cancer Family 

Study were at medium to high-risk of BC which is comparable to the IBIS-II participants.   The 

median ages of these groups of women were also similar (~age 62).  The similarities in PD (for 

women of similar age) between the high risk women in the CMN IBIS-II group and the 

Minnesota BC Family Study lends support to extrapolation of the results from this CMN MD 

and AI substudy to other similar (e.g. high-risk) populations.   

 

Typically only a single View from a mammography episode is assessed for density, although 

pairs of Views such as both CC mammograms are sometimes utilised.  The simple regression 

results (collated in Simple regression of baseline PD with different combinations of 

mammographic Views) suggest models utilising any single View or combination of Views are 

roughly equivalent.  The regression coefficients were generally consistent in magnitude, sign 

and significance for single Views, averages of pairs of Views, and the average for all four 

Views within each transformation of PD (identity (%), square root, natural logarithm).   

 

6.6 Conclusion 
 

The results of this analysis of baseline covariates and baseline MD were generally consistent 

with the reports in the MD literature, although many of the relationships noted during simple 

regression modelling were affected by a few participants with high (≥50%) PD.  PD and DA 

tended to show an inverse relationship with age at randomisation and BMI, whilst the 

relationship of PD and DA with age at menarche, age at menopause and age at first birth (≥30 

years) tended to be positive.  The relationship between BA and potential covariates is not well 

described in the MD literature; however the strongest relationship between BA was with BMI 

(p<0.001) which is expected.   
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A larger sample size of IBIS-II participants would help elucidate the discrepant relationship for 

PD and DA noted for non-parous women vs parous women in the dataset, as well as help clarify 

the influence of smoking status on MD (in high risk women).  A larger sample size may also 

assist with the relationship between MD and BC risk status (e.g. family history of BC and/or 

ovarian cancer) in populations of (post-menopausal) high-risk women. 

 

Square root transformed PD and DA provided regression models with the least heteroskedastic 

residuals.  This implies that square root transformations of PD and DA should be utilised during 

MD longitudinal modelling.  However, care will need to be taken during back transformation of 

the regression coefficients, which is needed to provide useful quantification of the longitudinal 

change in MD over time for this sample of IBIS-II participants.   

 

The results of the technical analyses as well as the baseline covariate analyses in this chapter 

imply that mammographic Version is an important factor which should be accounted for during 

modelling of the CMN IBIS-II MD data.  The KE52 mammographic Version in particular, 

differed significantly from the film Version for all models of PD and DA, e.g. Table 6-11.   

 

The simple baseline regression models utilising one, or the average of two or four (standard) 

mammographic Views were similar (Table 10-8), which implies that modelling with one View 

or the average of four Views may yield similar results during longitudinal MD modelling.  A 

small but significant difference exists between PD measured on CC vs MLO mammograms; 

models utilising different Views should take this relationship into account.  Models utilising BA 

and AA with different mammographic Views should account for both the CC vs MLO and right 

vs left differences in mammograms (Table 10-5). 
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7. AIM 4: Aggregate CMN IBIS-II MD longitudinal change 

 

This chapter contains the methods, results and discussion for Aim 4 of the thesis— the model 

for MD change over time for CMN IBIS-II participants with the treated and control groups 

aggregated.  The first part of this chapter describes the Aims of the chapter and the methods 

used in this analysis.  Descriptive analyses of longitudinal PD follow.  Next, the results of the 

analysis are presented, followed by a discussion of the results.   

 

7.1 Aim 
 

Aim 4 of this thesis was to develop an adequate model for mean change in MD over time for the 

aggregate (treated + control) groups— a “blinded” longitudinal analysis.  Treatment group 

allocation for the IBIS-II participants will remain blinded until at least January 2022, when the 

last participant completes ten years of follow up.  Currently, only the IBIS-II statistician has 

access to the unblinded IBIS-II trial data. 

 

In order to complete the Primary Aim of this thesis (Aim 5) — comparison of longitudinal 

change in MD for treated vs control IBIS-II participants— a statistical model to analyse the 

longitudinal IBIS-II MD data needed to be developed.  One longitudinal modelling strategy is to 

develop a good model for mean change over time, before adding in important covariates and the 

primary parameter/s of interest such as treatment group [36].  The Aim of this chapter was to 

define a good model for mean MD change over time for the IBIS-II treated and control groups, 

which includes all important covariates except treatment group.   

 

7.2 Introduction 
 

The effect of anastrozole treatment for participants in the IBIS-II trial was expected to exert its 

influence on MD by reducing PD as well as DA relative to control participants.  Most of the 
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change in MD due to anastrozole treatment was expected to occur within the first 12 months of 

follow up (Figure 7-1, below), as occurred for tamoxifen in the IBIS-I trial [296].   

 

Whilst PD continued to decline (more slowly) between years 1 to 5 for the IBIS-I tamoxifen 

treated participants relative to the control treated participants, this may not be true for 

anastrozole treated participants in the IBIS-II trial. This is because the IBIS-I group of high risk 

women was a mix of premenopausal participants (higher PD) as well as post-menopausal 

women (lower PD after the menopausal transition). All of the women in the IBIS-II trial are 

 

 
Figure 7‐1 Theoretical change in PD due to trial treatment, IBIS‐II participants 

 

 

postmenopausal, a requirement for treatment with aromatase inhibitors such as anastrozole. 

Post-menopausal women on average are older than premenopausal women; the rate of annual 

decline in PD tends to diminish with increasing age [144, 189]. Given the subtle effect expected 

for anastrozole in post-menopausal women, a negligible decline was expected between years 1 

to 5 for anastrozole treated participants relative to IBIS-II control participants. The decline in 

PD for IBIS-II treated participants was expected to rebound to control levels after year 5, as 

seen in women treated with other hormonal medications including AI [29, 261, 290].   
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7.3 Methods 
 

7.3.1 Participants and mammograms 
 

One hundred and twenty CMN IBIS-II participants contributed mammograms for Aim 4 (this 

chapter) and Aim 5 (Primary Aim, unblinded treated vs control analysis, Chapter 8).  Only 

mammograms from participants at the CMN IBIS-II centre were utilised for Aim 4 (this 

chapter) and the Primary Aim (Chapter 8).  Although fifty-one digital mammograms comprising 

14 episodes from six IBIS-II participants were collected from the Southern Highlands Cancer 

Centre in New South Wales, (as a result of the de-identification process) mammographic 

Version could not be determined for these mammograms.  Two set of baseline mammograms 

and two sets of follow up episodes for three participants were also unsuitable for measurement 

in Cumulus due to issues such as poor image quality and missing images.  This reduced the total 

number of participants from the Southern Highlands Cancer Centre to four. Because 

mammographic Version for each episode could not be determined, and the number of 

participants was small compared to the potential issues which might ensue (e.g. increase in 

variability because exact mammogram Version could not be controlled for), data from the 

Southern Highlands IBIS-II centre was not included in analyses for this thesis.   

 

CMN IBIS-II participant baseline mammograms were taken at a variety of institutions, 

including the Calvary Mater Newcastle.  All CMN trial follow up mammograms were taken on 

a single mammography machine in the Radiology Department at the Calvary Mater Newcastle 

hospital.  

 

As outlined in Chapter 3, mammograms for the IBIS-II Study were obtained at baseline and 

then annually thereafter. Mammograms were considered baseline episodes if they occurred up 

to 1 year prior to randomisation.  While follow-up visits, including mammography, for IBIS-II 

were on a specified schedule, there was some variation around the timing of the visits and 

examinations including mammography. Mammographic episodes occurring more closely to the 
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6 month follow up than the 12 month follow up were associated with the 6 month follow up 

data (6 months ± 3months).  Episodes taken between 9 and 18 months were associated with the 

12 month follow up data.  Thereafter episodes occurring within six months of an annual visit 

(i.e. ± 6 months) were associated with the follow up data for that annual visit.  

 

Mammograms were acquired in two rounds of collection.  The first (Collection 1) was in 2012 

after ethics approval was granted in December 2011.  Collection 2 was undertaken in 2014; 

mammograms in the second Collection included mammograms taken in 2013 and 2014, as well 

as mammograms taken at earlier dates.  Mammograms from the two collection rounds were 

assessed for density separately: in 2012 for Collection 1, and 2016 for Collection 2.  As 

described in previous chapters, participant mammograms were measured in Cumulus in random 

order, grouped by participant.  Hence all mammograms for a particular participant acquired 

during each Collection were read in random order, but sequentially prior to reading 

mammograms from the next participant.  

 

Standard mammographic Views of the breasts, namely the right cranio-caudal (RCC), left CC 

(LCC), right medio-lateral oblique (RMLO), and left MLO (LMLO) views were collected for 

each participant for all available trial mammography episodes, as described in the Methods 

chapter (Chapter 3), and Chapters 5 and 6.  Multiple Views were collected per episode to help 

reduce PD measurement error, which on average was ±8% PD for film-screen mammograms 

and ±10% PD for digital mammograms using Cumulus (Aim 2, Chapter 5).   

 

Compliance with trial treatment (anastrozole or placebo) was also recorded for each episode, as 

follows: full compliance; a small deviation from the protocol (e.g. <2 weeks without treatment); 

a treatment holiday; or if the participant stopped completely.  If available, the reasons for the 

deviation, treatment holiday or permanent cease was also recorded.   
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7.3.2 Measures  
 
The mammographic density attributes percent density (PD), dense area (DA) and breast area 

(BA) were selected for use in the longitudinal models in Aim 4 (this chapter).  As described in 

previously, BA and DA are directly measured using the Cumulus program.  PD is a derived 

parameter calculated as follows: PD = DA/BA.  Whilst other MD attributes such as adipose area 

(AA = BA–DA) and percent adipose (PA = AA/BA) are sometimes reported in the MD 

literature, these attributes were not utilised for longitudinal analyses in this thesis.  The change 

in PA was likely to be very small due to treatment with anastrozole.  The results from Aim 3 of 

this thesis (Chapter 6) showed that AA largely had the same associations as BA; as for PA, AA 

would likely undergo only small changes due to anastrozole treatment— changes which are 

better characterised using PD and DA.  A graphical distribution for AA, and median for AA and 

PA only are reported in this chapter for consistency with other reports in the MD literature. 

 

The effect of anastrozole on longitudinal PD and DA is the focus of Aim 4 (this chapter) and the 

thesis Primary Aim (Aim 5), hence most of the analyses emphasise these two parameters.  BA is 

also reported as part of this Aim, because BA has a direct influence upon the interpretation of 

change in DA.  Whilst changes in BA are less likely to affect assessment of PD because PD will 

change proportionally with BA (as described in Aim 2), a reduction in DA but not BA implies 

that only DA has changed.  As described in Aim 4 (previous chapter, section 6.4.1), adjustments 

were made to DA and BA as output by Cumulus (raster area) in order to account for differences 

in pixel spacing between mammogram Versions by converting raster size to area in mm2; hence 

all MD attributes which have a dimension (area), namely DA, BA and AA, are reported in mm2.   

 

The covariates3 [489] utilised in this analysis are the same as those described in Aim 3 (Chapter 

6) and utilised in the full multivariable models in Aim 3— age at randomisation (years), BMI 

                                                            
3
 The regression covariates are often referred to as confounders (of mammographic density) in this 
thesis.  However in the context of randomised controlled trials, the predictors in linear regression are 
used to improve precision.  They are not related to treatment assignment due to the randomisation 
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(kg/m2), age at menarche (years), age at first birth (3 categories: <30 years, ≥30 years, non 

parous), smoking status (never, current, former), menopause age (years), HRT use (never/ever), 

oral contraceptive use (never/ever), and previous IBIS-I participation (yes/no).  As described in 

Chapter 6, the menopause age parameter utilised an imputed age at natural menopause for 27 of 

the 120 participants for whom age at hysterectomy only was known; age at natural menopause 

was imputed for the 27 participants based on the age at natural menopause experienced by their 

57 IBIS-II peers.  All other covariate values were taken directly from the IBIS-II data supplied 

by the ANZ BCTG.  Besides the age at hysterectomy-only reported for 27 participants, due to 

the high quality of the IBIS-II trial data, full information was available for all remaining 

covariates for the 120 CMN participants (no data was missing or unknown).   

 

7.4 Statistical Methods 
 
All analyses for Aim 4 (this chapter) were undertaken using Stata v12.1.  P-values < 0.05 were 

considered significant. Coefficients from regression models utilising untransformed MD as the 

outcome parameter (dependent variable) are presented in % (PD) or mm2 (DA, BA and AA).  

Coefficients from models utilising square root MD as the outcome parameter are presented in 

square root or log transformed % and mm2.  Back transformation of coefficients was performed 

only for the parsimonious models of PD, DA and BA, to minimise the potential for reporting 

error. Back transformed values for the coefficients were calculated by squaring the sum of the 

coefficient and the (main effects) intercept and subtracting the square of the intercept, Equation 

7-1 : 

Equation 7‐1 

 

	 	 coefficient intercept intercept  

 

Use of the square of the intercept was derived from Singer and Willet [490]— in chapter 4 of 

that book, the square of a (main effects) intercept from a model with a square root transformed 

                                                                                                                                                                              
process, although they are associated with the outcome.  Covariates are therefore not considered to be 
confounders in the context of randomised trials.  Gelman, 2006 [472]. 
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outcome parameter was utilised to obtain the value of the intercept on the outcome parameter’s 

original scale.  Because all coefficients in a regression model provide estimates in relation to the 

intercept of the model, subtracting the square of the intercept from the square of the sum of the 

intercept and the coefficient provides an approximation of the back transformed coefficient 

value.  This approach helps to overcome difficulties with the squaring of coefficients with 

values less than 1, which become smaller when squared.  However, the values of the back 

transformed coefficients are highly dependent upon the value of the intercept used during back 

transformation.  The value of the intercept is the estimated value for the outcome parameter 

when all coefficients in the model are equal to 0; hence the intercept will vary if centreing of the 

predictor (independent) variables is used, and it will also vary if the values used to centre the 

parameters change.  Because the intercept estimates for PD and DA for models utilising film 

mammograms (e.g. ~30% PD) was higher than the observed median baseline PD and DA (PD 

18%, DA 2800mm2, Table 6-6, Chapter 6), values closer to the baseline values for the CMN 

participants were also substituted for the intercept in Equation 7-1.  A range of back transformed 

coefficient values are tabulated for the MD change over time coefficients using different 

‘intercept’ reference values for Equation 7-1.  Two of the selected ‘intercept’ values, 20% PD 

and 27cm2 (2700mm2) for DA, are close to the median baseline values for the CMN participants 

(Table 6-6), and are identical to the reference values used in another MD longitudinal study, 

which used a variant of Equation 7-1 to calculate back transformed coefficient values from 

models with square root transformed MD as the outcome parameter [188].   

 

This chapter refers to two related groups of longitudinal models for IBIS-II MD.  MD was 

initially modelled using the four standard mammographic Views individually as the lowest level 

units of measurement in the longitudinal model—i.e. all four Views grouped within an episode 

were incorporated into the statistical model.  These initial results are annotated in Three-Level 

Unconditional Means and Unconditional Growth Models and Three-Level Full and 

Parsimonious Models of PD, DA and BA.   To simplify the statistical model, the density 

measurements from all four Views were averaged together to create a composite measurement 
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of PD, DA and BA for each mammographic episode; this approach was also utilised in Aim 3 

(baseline characteristics analysis, Chapter 6) which utilised average MD for the baseline 

episodes to meet the independence assumptions of simple and multivariable linear regression. 

Use of  average MD per episode also helps to stabilise the longitudinal MD measurements, 

which are inherently variable due to the subjective nature of the semi-automated method utilised 

to measure MD (re: Aim 2, reliability analysis, Chapter 5). This simplified approach also 

permitted modelling of a covariance structure for the data, which was not possible to perform in 

the statistical program with all four mammographic Views as the primary unit of analysis.  

These simplified, average PD, DA and BA models were utilised as the final models for this 

Aim, as well as for the Primary Aim (next chapter).  

 

Due to the strong right skew of PD and DA and the right skew of BA, square root 

transformations of these MD parameters were assessed during statistical modelling for 

comparison with models of untransformed MD measurements. This was done to ascertain if 

square root transformation would improve normality of the residual distribution. Preliminary 

modelling using Collection 1 mammograms showed natural log transformed PD and DA 

produced residuals with a left skew.  This also occurred during simple regression with natural 

log transformed baseline MD in Aim 3 (Chapter 6, re: Figure 6-5).  Natural log transformation 

of PD was modelled for comparison with untransformed and square root transformed PD during 

unconditional means and unconditional growth mixed modelling, however, due to non-

normality of the residuals, further modelling using natural log transformations of PD and DA 

was not undertaken for Aim 4 (this chapter) or the Primary Aim (next chapter). 

 

The majority of change due to active trial treatment with anastrozole was expected to occur 

between randomisation and the first annual (12 month) follow up [296].  MD change over time 

was analysed both categorically using follow up number (in months), and as a continuous 

parameter (years since randomisation, converted from days).   Due to the differences in MD 

measured on film vs digital mammograms, analyses were also undertaken separately for film 
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and digital mammograms, with further adjustment by hardware and/or software Version of 

digital mammograms.  The mammograms were then combined in additional analyses which 

included an indicator for different Versions of mammograms.  Four digital mammographic 

episodes of unknown Version (‘other’) were not included in the indicator for different 

mammogram Versions, due to the small number (4) of these episodes. 

 

To account for correlation amongst the repeated mammographic density measurements in 

subjects over time, a linear mixed model was utilised to model the longitudinal changes in 

mammographic density in Calvary Mater Newcastle IBIS-II participants [490].  The steps 

undertaken during fitting of the longitudinal mixed model are described in more detail in 

sections 7.4.3 to 7.4.7.  

 

7.4.1 Covariate checking and centreing  
 
The majority of pre-analysis covariate checking was undertaken prior to fitting the baseline 

simple and multivariable regression analyses in Aim 3 (Chapter 6), where collinearity between 

the response and predictor variables, as well as the predictors was undertaken and the 

distributions checked for outliers.  Most of the independent predictor variables were found to be 

interrelated, although the interrelations did not exceed acceptability limits (e.g. the variance 

inflation factor (VIF) for the interrelationships were below 3).   

 

Although most of the continuous and discrete covariates had skewed distributions (BMI, 

randomisation age, age at menopause, and age at first birth), they were utilised as per Aim 3 as 

continuous covariates.  This was done to further avoid portioning the data into small categories 

which represented only a few or no participants during multivariable modelling, and to avoid 

the loss of information which results when a continuous covariate is transformed into a 

categorical covariate.  Use of original units for all continuous parameters aided with ease of 

interpretation of model coefficients since back-transformation is not required. Additionally, it is 
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not a requirement that the dependent and independent variables in regression models have 

normal distributions; only the residuals are required to be normally distributed to meet 

regression assumptions.  However, as noted in Aim 3 (last chapter) transformation of the 

dependent (outcome) variable, PD, using a square root transformation provided an acceptable 

normal residual distribution whilst the residuals from models of untransformed PD were skewed 

to the right.  This is because the residual distribution generally reflects the distribution of the 

outcome variable. 

 

To see if the residual plots could be further improved (i.e. in terms of normality of the 

distribution), BMI was selected for transformation; this was because, of the two strongest 

confounders of MD, BMI was more strongly skewed than age.  Use of square root and natural 

logarithm transformed BMI improved the distribution of BMI, producing a distribution which 

more closely approximated the normal distribution.  Natural logarithm and square root 

transformed BMI was substituted for untransformed BMI in the mixed linear models (sensitivity 

testing).  The resulting residuals were graphed using histograms, and compared to residual 

histograms from models with untransformed BMI. 

 

To provide a meaningful value for the intercept, as well as assist with back transformation of 

coefficients from square root transformed PD and DA models, continuous covariates utilised in 

final models were centred at a noteworthy value.  Parameter centreing only affects the intercept 

value of a regression model, not coefficient values (β).  Intercept values of regression models 

with centred covariates represent the mean response for an average participant with 

characteristics matching the centred values of the continuous covariates and the reference values 

(ref.) of each categorical covariate.  Without centreing, the model intercepts represent mean MD 

for participants with values of 0 for continuous parameters.  For example, a BMI of 0 is outside 

the range of BMI for the women sampled in this project; this is problematic for model 

interpretation.  Furthermore, 0 BMI is not a possible value for a real person, further reducing the 

appeal of uncentred BMI for this analysis. 
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Randomisation age and menopause age were centred at age 50.  Age 50 was chosen because 

menopause typically occurs at around age 50, and thus 50 is the likely age for high-risk women 

to consider use of an AI for BC prevention. Menarche was centred at age 13 (median for the 

sample population and historically).  BMI was centred at 25 kg/m2 (at the borderline between 

healthy and overweight, and a more appealing number than 24 or 24.9). Hence for a model with 

(centred) age at randomisation, BMI, menopause age, and AFB (<30y reference category) as the 

independent variables, the intercept represents the mean MD response for participants who were 

age 50 at randomisation, have a BMI of 25, experienced menopause at age 50, and gave birth to 

their first child at age 29 or under. Mammogram Version was also modelled as a categorical 

parameter; the model intercept is also representative of participants with film mammograms in 

all mammograms models (film + digital) and film only models.  For digital mammogram only 

models, the intercept is representative of participants with KE52 (Kodak Elite, software Version 

5.2) mammograms at baseline. 

 

The back transformed coefficient values tabulated for the parsimonious models of PD, DA and 

BA therefore are also representative of participants whose characteristics match the values used 

to centre the continuous parameters, and whose characteristics also match the reference 

categories of the categorical parameters. 

 

7.4.2 Descriptive Analyses 
 
Descriptive analyses were undertaken initially to examine the ‘raw’ (as measured) distributions 

of the data for individual mammograms (not average MD per episode) and the timing and 

distribution of individual mammograms with the (ideal) annual trial follow up dates.  Measures 

of central tendency were calculated for the episode averages of PD, DA, BA, adipose area (AA) 

and percent adipose (PA); median, Q1 (25th percentile), Q3 (75th percentile) were tabulated for 

PD and DA, and median tabulated for BA, AA and PA. These measures were calculated for all 

mammograms, film-only, digital-only, and for each digital mammogram Version.  The 
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longitudinal average PD per episode response of participants was examined using Stata’s 

“panel-data” line plot facility to search for participants whose longitudinal response appeared 

unusual, particularly in regard to additional variability in the measurements which may have 

been introduced by measuring mammograms for the two Collections separately in 2012 and 

2016.  Participants who appeared to have more than 5 to 10% changes in PD over time not 

attributed to other causes (e.g. the film to digital transition, the transition between different 

digital mammogram Versions) had their entire set of mammograms remeasured in Cumulus, 

using the per-participant random order strategy utilised during earlier MD assessment. 

 

7.4.3 Longitudinal modelling of MD 
 
Linear mixed regression (regression which utilises fixed and random effects) was undertaken to 

model average longitudinal change in MD for CMN IBIS-II participants (both treated and 

control).  A mixed linear model was chosen for this dataset because it accounts for correlations 

amongst observations which result from repeated measurements, e.g. sequential measurements 

of PD on IBIS-II participant trial mammograms.  Mixed models can also accommodate data 

which is irregularly spaced (time-unstructured) and unbalanced (varying numbers of follow ups 

per person). The model has both fixed and random effects, and hence is considered to contain 

‘mixed’ effects.  Interpretation of the coefficients for the fixed effects component of the model 

is identical to that for standard regression. The fixed effects are the average response of the data; 

they represent the mean, structural portion of a mixed model. Inclusion of random effect 

components tends to reduce the variability otherwise attributed to the fixed part of the model, 

for example by specifically modelling heterogeneity in PD among different individuals who 

have multiple measures of time within the data.  This increases the precision of the estimate of 

the fixed components by reducing the standard error (SE) associated with the fixed effects. 

 

The random effects (RE) component of the mixed model utilises groups to create a hierarchy 

(levels) within the data; these groups provide a structure to account for similarities amongst 

members of groups within the data.  For instance, data from a national (cross sectional) survey 
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might be grouped by city, then region, then state.  A study observing secondary students might 

group the students by classrooms, then schools, then school districts within a state, and then 

finally by state.  Each group constitutes a ‘level’ within the model.  Random effects can be 

modelled for each level of the model, and estimate the variability in the outcome associated with 

that level (group) of the data.   

 

Within a multilevel model there is generally at least one random effect associated with each 

level / hierarchy of the data. There may be multiple random effects at each level, depending on 

the hypothesised nature of the relationship among outcome and explanatory variables. 

Typically, a random intercept for each RE level within the data is always modelled.  If enough 

variability in change over time exists amongst units within a level, a RE for rate of change is 

usually modelled at that level.   

 

The random effects components of the model can provide insight into relationships within and 

between the different levels or grouping within the data.  A relationship sometimes exists 

between the initial status of units (represented by the RE intercept) and RE rate of change for 

these units; these RE thus co-vary with each other (for example, units / groups / clusters with 

high values of the outcome initially may have a steeper decline over time than units with lower 

initial values).  This co-varying relationship is modelled as a RE covariance component, and it 

provides quantification of the relationship (covariance) between initial status and the rate of 

change between units.  The RE covariance is typically converted to a correlation coefficient, 

which standardises the relationship between the RE components.   For example, the correlation 

could quantify the relationship between initial status of participants in the IBIS-II trial (e.g. PD 

≥25% vs PD <25% at baseline) and differences in change over time (e.g. the rate of change in 

PD during the first year of anastrozole treatment).  Higher baseline PD might be associated with 

a greater annual rate of decline in PD during the first year of treatment, whilst lower PD might 

be associated with slower declines in PD; hence the correlation would be positive.  The reverse 

could also be true (higher PD could be associated with a lower rate of change), and thus the 
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correlation (and covariance) between initial status and the rate of change for the IBIS-II 

participants would be negative.   

  

The analysis for Aim 4 was performed following the guidelines of ‘Applied Longitudinal Data 

Analysis’ by Singer and Willett [490] and other texts [36, 491, 492].  The steps undertaken to 

model the data are described in more detail in sections 7.4.4 to 7.4.7 below.  

 

As mentioned previously, a three level model was originally fitted for the data.  However, Stata 

does not permit modelling of covariance structures other than the default ‘independent’ 

covariance structure for models with repeated  times at the base (lowest) level of the model.  

Due to this issue with covariance structure modelling for the three level model, a two level 

model with the average of the four mammographic Views as the lowest level was selected.  The 

upper level of the final hierarchical data structure was participant; this allowed the model to 

account for similarities of the longitudinal MD measurements for each participant.  Ordering of 

episodes (repeated measurements of average PD, DA and BA) for each participant was provided 

by follow up number and mammographic date.   

 

Fixed effects (e.g. from covariates) were retained in the model if they yielded a p-value of 0.10 

or less.  This more conservative threshold value of 0.1 was utilised due to the small sample of 

women in the dataset.  Thresholds of 0.10, 0.15 or 0.20 are often used during stepwise reduction 

in multivariable regression to help ensure important covariates are not eliminated.  Covariates 

with p-values >0.1 but <0.2 were closely examined for strong changes in BIC and AIC upon 

removal. 

 

Forward selection and backwards elimination for models with ‘all mammograms’ (both film 

and digital) was undertaken to create parsimonious models.  Backwards elimination only was 

primarily utilised for film only and digital only models; this was because forward and 

backwards selection always resulted in identical parsimonious models for the all mammogram 
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models, and also resulted in identical models for every film only and digital only model on 

which both approaches were utilised in preliminary analyses.  The Bayesian Information 

Criterion (BIC) and Akaike information criterion (AIC) as output by Stata were reviewed during 

stepwise regression to compare models.  As described in Aim 3 (last chapter), changes in BIC ≥ 

3 were considered significant, whilst changes in AIC ≥ 2 were considered significant. The AIC 

takes into account the log likelihood of the regression model and the number of parameters 

(complexity) in the model, whereas the BIC considers both the sample size (number of 

observations) and number of parameters to estimate complexity whilst accounting for the log 

likelihood of the model.  To create more parsimonious models, selection of covariates based on 

the BIC outcome instead of AIC outcome was undertaken; covariates which increased BIC ≥ 3 

were removed from the model.   

 

Each parameter was also modelled in a bivariable relationship with MD (‘simple’ mixed 

regression), including the alternative HRT, OC and age at first birth categories tested in Chapter 

6; the simple mixed regression coefficients were compared to their parsimonious and full mixed 

model counterparts for any unusual differences (e.g. coefficient values which differed by more 

than 1 or 2 SE). 

 

P-values for mixed model RE estimates are not generated during model estimation by Stata.  

Random effects were considered to be significant if the SE for that component was less than or 

approximately equal to half to the estimate for that random component. Only significant RE 

were retained in models. 

 

Time was modelled both as a categorical parameter (follow ups at 0, 6, 12, 24, 36, 48, 60, 72, 

and 84 months— to match the IBIS-II trial follow up schedule) and continuously as days since 

randomisation converted to years. The continuous time parameter was centred at the date of 

randomisation for each participant.   
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As described in section 7.2  Introduction, the MD change over time due to trial treatment was 

not expected to be linear over the five year treatment period and after treatment cease.  

However, the initial change of anastrozole treatment on MD could have been shorter in duration 

than predicted (e.g. over the first 3 to 6 instead of 12 months), or longer (over the first 24 to 36 

months of treatment) or non-linear over the treatment period (e.g. decreasing in magnitude over 

time).  Hence the shape of the average trajectory of the participants was closely examined by 

reviewing the coefficients for categorical time vs those for continuous time.  The best linear fit 

over time for the change in PD and DA was initially determined by systematic examination of 

the categorical time coefficients vs linear time coefficients from baseline through year 7.  Linear 

splines of continuous time were created by selecting cut points which suited the mean growth 

curve of the IBIS-II participants [36]. Cut points allow the linear spline—a piecewise linear 

model— to change slope at the cut point (also known as a knot [491]).    

 

Models of both untransformed and square root transformed PD and DA were checked for the 

cut points which best suited the data. The first cut point for continuous time was selected which 

maximised the slope of change over time from baseline to 0.5 through 2.5 years post-

randomisation in 0.25 year (3 month) increments.  Additional cut points starting from year 1 

through 5.5 years post-randomisation in 0.5 year increments were also compared for differences 

in slope (rate of change over time).   

 

The full model included both mammogram Types (film, digital); the continuous covariates 

randomisation age (years), BMI (kg/m2), age at menarche (years), menopause age (years); the 

categorical covariates age at first birth (≤30 years, >30 years, non-parous), HRT use (yes/no);  

oral contraceptives use (yes/no), previous IBIS-participant (yes/no) and mammogram Version 

(film, KE5.2, KE5.4, and Fuji). Age at randomisation was retained in all final models, 

regardless of significance or coefficient sign, because age is a well-recognised, strong modifier 

of MD.   
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Parameter estimates during covariate (fixed effect) model comparisons were obtained using 

maximum likelihood (ML) estimation. Interactions between covariates were not examined 

because there was no biological or clinical rationale for these.  However, sensitivity analyses 

involving interactions between two covariate and time were undertaken.  A quadratic term for 

time was tested in some non-multiply imputed parsimonious models of PD because a quadratic 

term for time was significant in another longitudinal study of PD [189].    

Models were fitted for all mammograms, and separately for film only and digital only 

mammograms.  All mammogram and digital only mammogram PD and DA models were also 

adjusted for mammogram Version as a (categorical) fixed effect. 

 

Statistical models were checked for residual heteroskedasticity, including at different levels of 

the models.  The parsimonious models of PD, DA and BA were examined for functional form, 

by graphically comparing the observed MD values with the linear prediction and fitted values 

generated by the model. 

 

Sections 7.4.4 to 7.4.7, below, describe important steps undertaken to model the data using the 

hierarchical mixed linear model. The data were first modelled ‘unconditionally’[490].  The 

representation of time was altered to a more suitable configuration as a continuous spline ‘cut’ 

(allowed to bend) at suitable time points.  Forward stepwise and backwards stepwise modelling 

was undertaken to select a set of parsimonious covariates.  Different covariance structures were 

tested. The models used for post-estimation testing of residual heteroskedasticity and model fit 

are described.  Subgroup and sensitivity analyses are listed in section 7.4.8. 

 

7.4.4 Unconditional means models for longitudinal PD, DA, BA 
 

As per the procedure suggested in Singer and Willet’s text [490], an unconditional means model 

was fitted to the data.  The unconditional means model of MD utilised MD as the dependent 

variable and only a single RE term for participant as an explanatory variable (a two–level 
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“variance component” model).  Use of the RE term for participant allowed each participant’s 

mammographic episodes to be grouped within each participant; as described previously, this 

allowed the model to account for the repeated measurements made for each participant.  This 

model provided a baseline against which later models with additional covariates were 

compared. Three quantities are estimated by this two–level model: a (fixed effect) intercept (a 

constant) and two random effects: the variance (variability) of the measurements between each 

person (inter-person variability) and the variability over time within each participant in the 

model (intra-person variability). Hence this model partitions the variability in the MD 

measurements into two sources— intra- and inter-person variability.  The model is considered 

an ‘unconditional’ model because it does not contain any explanatory variables in the fixed 

effect (FE) part of the model, the main ‘structural’ part of the model. 

 
Figure 7‐2 Unconditional means model, example participant and grand mean trajectories 
Each participant has their own mean MD and SE.  The grand mean is comprised of the average of the 
participant’s means.  Trajectories are flat because time is not included in the model. 

 

The lowest level (level 1) of the hierarchy is the MD measurement for each episode (the average 

PD, DA or BA for the four mammographic Views per episode is the MD measurement for that 
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episode).  The set of MD measurements for each participant is grouped within each participant; 

participant is hence the second level (level 2) utilised in the unconditional means model.   

 

Each participant has their own average trajectory (growth curve).  Because time is not a 

parameter in an unconditional means model, each person’s average trajectory is flat, Figure 7-2.  

Each participants’ MD measurements vary around their own mean by their own SE.  The 

average of all participants’ unconditional means is the ‘grand mean’ for the model.  Hence the 

grand mean is the mean of the individual participant means.  The amount the individual 

participant means vary around the grand mean is the SE of the grand mean. The intercept of the 

grand mean trajectory forms sole the ‘fixed effects’ (FE) estimate for an unconditional MD 

means model.  Thus the ‘grand mean’ is the population average true mean for all participants 

(the highest level units in the model) in an unconditional means model.   For models in this 

project, the FE denote the average MD response of the 120 CMN IBIS-II participants.   The RE 

variance estimates represent the average variability of the participants for each RE at each level 

of the model.  

 

As described above, the total variability in the model is partitioned into the two RE estimated by 

the model (the within-person variance and the between-person variance). The within-person 

(intra-person) random effect is estimated by the model as the average of the within-person 

variability.  For example, if participants’ measurements vary only slightly around their 

individual means, the model will have low average within-person (level 1) variability.  

 

The between-person (inter-person) variability is the estimate of how much the participants’ 

means vary (on average) around the grand mean.  If all participants are similar, the between-

person (level 2) variance estimate will be relatively small; if participants’ mean estimates vary 

greatly the between-person variance estimate will be relatively high.   
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An ICC for the proportion of the total variance attributable to within-person differences 

(variability) was calculated by dividing the between-person variance by the sum of the between-

person variance and the within-person variance.  This ICC provides information on the residual 

autocorrelation in the model, which is the amount that the density parameters (e.g. PD) 

measured for each person’s follow up visits are correlated with the density measurements in 

their other follow up visits.   

 

The model coefficients, ICCs and model fit estimates from the PD, DA and BA models were 

tabulated for comparison with results from later models.  The model coefficients for the 

unconditional means models are reported as output by the statistical program— in 

untransformed and square root transformed units.  The mixed models were configured in Stata 

to report RE estimates as variances as per Singer and Willet (instead of the default setting of 

standard deviations4); hence RE estimates in this thesis are reported as variances instead of 

standard deviations.   

 

7.4.5 Unconditional growth models for longitudinal PD, DA, BA 
 

The unconditional growth model is comprised of two levels as per the unconditional means 

model, with time added to the model as both as a fixed effect and as a random effect.  The 

addition of time as a fixed effect in the model allows the estimated average growth curve for all 

participants to change over time— the trajectory does not have to be flat. The inclusion of a RE 

for time allows each participant to have a unique growth curve which varies from the slope of 

the grand mean growth curve, Figure 7-3. The ‘growth’ in the name of the model refers to the 

‘growth curve’ of the dependent variable, i.e. the change over time of the outcome being 

modelled.  No additional (FE) explanatory variables are added to the model, hence this growth 

model is also ‘unconditional’. 

 

                                                            
4 Variance is the square of the standard deviation; Variance = (standard deviation)2 
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The model now contains two fixed effects, a constant and a slope (change over time) which 

comprise the ‘mean (average) structure’ for the model.  The FE intercept (constant) represents 

the grand mean (averages) of all participants’ density measurements at time 0.  The FE time 

parameter coefficients represent the average change over time for all participants.  Categorical 

time was modelled as months since randomisation (0, 6, 12, 24, 36, 48, 60, 72, and 84 months).   

In separate unconditional growth models, continuous time was modelled as days since 

randomisation converted to years (days/365.25).  Continuous time therefore provided a more 

precise date of mammography than categorical time, because the latter rounded continuous time 

to the nearest follow up visit.  Categorical time, however, permitted non-linear growth curves to 

be fitted. Time modelled as a single continuous trajectory forced the growth curves to conform 

to a single, straight line; the growth trajectories could not bend like the growth curves for 

models with categorical time. 

 

 
Figure 7‐3 Unconditional growth model, example participant and grand mean growth curves 
Each participant has their own mean growth curve SE, the slope of which can vary from other 
participants and the grand mean growth curve.  The grand mean is comprised of the average of the 
participants’ mean growth curves. 
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The addition of time to an unconditional means model typically explains some of the within- 

and between-person variability in the model, which is a characteristic effect of variables which 

change over time such as ambient temperature and income. In contrast, parameters which do not 

change over time (constants) such as sex and race primarily influence between person 

variability in mixed models. Parameters such as BMI which can change over time but are 

measured only once (e.g. IBIS-II baseline BMI) are considered to be constants, and hence 

primarily affect between person variability.   

 

Two RE at the level of participant (level 2) are now included in the model: a random slope for 

each participant and a random intercept for each participant.  As for the unconditional means 

model, the random intercept allows each participant to have a different baseline PD from the 

grand mean (FE intercept).  Similarly, the random slope for each participant allows each 

participant to have a different slope from the grand mean trajectory (the FE time parameter). 

 

A between person (RE) covariance was also fitted for the between person RE of the model, due 

to the potential for an association between initial status (baseline PD) and change over time.  To 

express the covariance as a (standardised) correlation coefficient (ρ), the covariance was divided 

by the square root of the product of the variance components (initial status [RE intercept] and 

change over time [RE slope for time]), 

 

 
Equation 7‐2 

	
	 	 	 	

	 ∗ 	
 

 
 
The reduction of within person variability due to the addition of time in the model was 

estimated by calculating the difference of the within person variance (WP var) between the 

unconditional means and growth models as a proportion of WP variance of the unconditional 

growth model,  
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Equation 7‐3 

	 . 	 	 	 .		 	 	 	
	 . 	 	

 

 

 

Statistics of model fit—log likelihood (LL), AIC and BIC [493] [478]— were obtained for each 

unconditional growth model.  The Deviance statistic (–2LL, for multilevel models) [490], was 

also calculated to assess the improvement in fit by the addition of time to the model. 

 

7.4.6 Covariance structure selection  
 

Simplification of the model with average MD at the lowest level of the model—rather than 

View-specific MD— permitted variance-covariance structure testing of the density 

measurement residuals. The residuals are the (within-person, level 1) deviations of the MD 

measurements from mean growth curve of each participant. Reduced maximum likelihood 

(REML) was used during covariance structure model comparisons [490].   

 

All available linear mixed model covariance structures in Stata (independent, exchangeable, 

auto regressive (AR), moving average (MA), unstructured, banded, toeplitz, exponential) were 

trialled for  models of the square root transformed MD parameters (PD, DA and BA); these MD 

models were configured with the parsimonious set of covariates selected during ML estimation 

and the default covariance structure (independent covariance, i.e. no covariance between 

mammographic episodes).   

 

Parsimony, lower BIC scores and theoretical fit of the covariance structure to the data were 

considered during comparisons of the covariance structures which converged properly5.   

                                                            
5 The BIC cutoffs for model selection of 0‐2, 2‐6, 6‐10 and >10 [weak, positive, strong and very strong 
evidence, respectively] are for models with independent observations.  This is not the case for mixed 
longitudinal models [Jones 2011]. Singer and Willett [2003] recommend use of –2(log likelihood), the 
Deviance statistic, for multilevel models, rather than the AIC or BIC when assessing model fit.   
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Because log likelihood, AIC and BIC model statistics are not available after multiple imputation 

estimation, as for the regression models in Aim 3 (previous chapter), an average of the 25 

multiply imputed estimations for the unknown age at menopause was utilised during covariance 

structure selection.   

 

A sequential integer time/ordering variable for the AR, moving average (MA), toeplitz, 

unstructured and banded structures was created by cutting continuous time in years at 0.2 years 

after each annual follow up (i.e. 1.2 years, 2.2 years, etc.). Hence all 6 month follow ups were 

allocated into the 1 year category for this variable.  0 years for this variable was defined as the 

time between –1 and 0.25 years post-randomisation. Duplicate observations within categories 

were manually reordered to retain all mammographic episodes, however 2 participants with 

both –1 year baseline mammograms and ~2 month mammograms had these dates categorised as 

–1 and 0 years respectively.  The exponential covariance structure utilised the ‘uncut’ (no 

splines) continuous time parameter (episode date converted to years, centred at date of 

randomisation).  

 

During covariance structure testing, mammogram Version lost significance as a separate RE 

level within the model.  Because each mammogram Version was still likely to induce randomly 

varying effects for each participant, separate indicator variables for each mammogram Version 

were created.  Separate indicator variables were required, because support is limited for factor 

variable notation (an automated method of creating indicator variables from a categorical 

parameter) in Stata for random effects.  All possible different combinations of the four indicator 

variables were modelled as RE: all four simultaneously, different sets of three, different pairs, 

and each RE slope for Version individually. 

 

For generalised mixed linear models, the ratio of the FE default SE to robust SE indicates 

potential problems with the covariance structure specification [494].  If this ratio exceeds the 
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interval from 3/4 to 4/3 the covariance structure may be misspecified.  These ratios were 

evaluated for covariance structures which converged properly.   

 

Robust SE were obtained, since this allows the model SE estimations to likely be more correct 

(consistent and less biased) and less prone to misspecification problems and departures from 

assumptions (e.g. non-normality of residuals). 

After a covariance structure was selected, forward selection for significant covariates was 

repeated using ML estimation to ascertain if the parsimonious models fitted using the default 

(independent) covariance structure were still correct.  Robust SE were utilised during this 

second round of covariate selection, and were also utilised in final models to improve SE 

estimation in the event the models were incorrectly specified. Regression post estimation VIF 

(variance inflation factor) testing was performed as part of forward selection of significant 

covariates for the square root transformed MD parsimonious models (modelled only with ‘first’ 

(baseline or earliest) mammograms) for each participant), to cross check that age at 

randomisation and age at menopause were not significantly collinear (i.e. VIF was not >3). 

 

7.4.7 Post estimation  
 

As described previously, multiple imputation (MI) post-estimation commands in Stata are not as 

numerous as those for models which are not imputed.  Post-estimation linear prediction of 

multiply-imputed mixed linear models is limited to the ‘linear’ predictions for the FE portion of 

the model (xb, the mean structural linear prediction) and its standard errors.  Predictions for the 

RE portion of the model are not available for multiply imputed mixed models, hence ‘fitted’ 

predictions of both the linear (FE) predictions and RE effects cannot be obtained.   

 

In order to see if it was feasible to use non-imputed models, properly imputed models of PD 

were compared against models of PD that utilised an average of the 25 MI imputed values for 

age at menopause for the 27 participants with unknown age at menopause.  The model 



Chapter 7 

235 

coefficients and SE as well as graphs of the linear predictions (xb) were compared.  Few 

differences were found. Hence it was judged acceptable to use the non-MI models to undertake 

post-estimation checking of the parsimonious aggregate models of MD change for the CMN 

IBIS-II participant data. 

 

Use of non-MI models allowed full access to the range of post-estimation commands for mixed 

models in Stata.  Fitted MD values for each participant were estimated in Stata by adding a 

‘Best Linear Unbiased Prediction’ (BLUP) for each level of random effects to the mean 

structural prediction (FE ‘xb’ estimates) for each participant.  These linear (FE) and fitted 

(FE+RE) estimates were utilised to create a number of graphs to check the parsimonious models 

against the measured (observed) values for MD.  Because the axes of the predicted vs observed 

graphs were inadvertently reversed (the observed values are plotted on the y axis instead of the 

x axis), a line of equality (y=x going through the origin) is shown for reference, instead of the 

more typical linear prediction reference line. 

 

The residuals from the linear (xb) and fitted estimates were visually assessed for normality.  

Additional checking of normality using skewness and kurtosis tests were undertaken.  Plots of 

the observed, linear and fitted predictions for low, mid and higher PD participants were visually 

inspected for fit. 

 

Models were checked for heteroskedasticity, normality of residuals, and linearity assumptions.  

The parsimonious models of PD, DA and BA were examined for functional form, by 

graphically comparing the MD values input into the model with the linear prediction and fitted 

values generated by the model. 

 

7.4.8 Subgroup, sensitivity and exploratory analyses  
 

To examine the possible influence on model outcomes, participants with unusual values for MD 
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and other covariates were omitted from the parsimonious models.  The resulting coefficients 

and SE were examined for any substantial differences from the original models.  Three 

participants with high PD (≥50%) were omitted, as well as a participant with an unusually long 

duration of HRT for the dataset (361 months) and a participant with unusually high OC duration 

(528 months).  Women with imputed age at menopause were also omitted, and the resulting 

models compared with those for all 120 participants for coefficient size and significance.  

Additional comparisons were also made with another PD model which utilised ‘as reported’ 

values from the IBIS-II database for age at menopause for the 93 participants for whom these 

values were known, and the age at hysterectomy for the 27 participants for whom age at 

menopause was not known. MI was not required for this ’as reported’ PD model, since age at 

hysterectomy was substituted for age at menopause for the 27 participants for whom age at 

menopause was not known. 

 
 
Given that other longitudinal MD studies have shown an easing reduction in PD change over 

time with increasing age, e.g. [144, 189], further modelling was done according to age group at 

baseline: ≤60 years, and >60 years, which approximated median age of the 120 CMN 

participants at baseline (~62).  Baseline to year 1 square root transformed PD change was 

tabulated for women ≤60 years vs >60 years for models fitted with all mammograms, film only, 

digital only, KE52 only and KE54 mammograms only; these different digital mammogram 

Versions were modelled separately to assess if PD baseline to year 1 growth differed for the 

different digital Versions. Models for Fuji mammograms only were not fitted, because all 

baseline and 6 month mammograms were taken at CMN prior to use of this mammographic 

Version. 

 

 
Models by age (≤ or > 60 years) for the film only, KE52 only and KE54 only subsets of 

mammograms were modelled with the default (independent) covariance structure due to small 

sample size; this allowed the models to converge because there were too few within person 
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repeated measurements to calculate ‘rho’ (the within person correlation estimate) for these 

subgroup models.  An additional set of all mammogram models were fitted for women ≤55 vs 

>55 years at baseline, and for women aged ≤65 vs >65 at baseline, for comparison with the 

original model and the models divided at age 60.  The number of distinct episodes and 

participants available from baseline to 1 year post-randomisation for each age group subset was 

also tabulated, to provide an indication of the samples sizes and repeated measurements per 

participant likely to contribute to each model. 

 

The interaction between age at randomisation and time was also modelled as an interaction 

between time and age as a continuous variable.  This allowed full use of the data set within one 

model; separate models for younger and older women, as described above, were not required.  

An interaction between time and mammogram Version was also modelled because it seemed 

likely that the average slope for PD and DA over time might vary for each mammogram 

Version, e.g. Figure 7-7. The time and mammogram Version interaction model was fitted both 

with and without RE terms for film and Fuji mammograms, to compare if model coefficients 

differed substantially (>1 or 2 SE) with and without the RE for Version. These interactions 

(between age and  time, and Version and time) were exploratory only, and were not considered 

for retention in the final aggregate longitudinal models.  Retention of an interaction term with 

time in the aggregate models would create three-way interactions with treatment group during 

modelling for the Primary Aim; the sample size was too small to have adequate power to 

examine all of these effects simultaneously.   

 

Because of potential differences in longitudinal MD due to mammogram Version, models for 

each digital mammogram Version only were used to control for longitudinal differences in 

change due to mammogram Version.  Models for film, KE52, KE54 were modelled with both 

an exponential and default (independent) covariance structure for compatibility with the Fuji 

only model.  This is because the model with Fuji mammograms only would not converge when 
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fitted with an exponential covariance structure; hence only results for the default (independent) 

covariance structure are tabulated for the model with Fuji mammograms only. 

 

Some studies assessing MD change in response to AI treatment have excluded women with low 

PD (e.g. <5%) [29, 313], presumably to enhance the likelihood of observing a difference 

between treatment groups.  Other MD and AI studies have shown that change in PD differs for 

women according to baseline PD [31, 312]. To assess if any differences in rate of MD change 

existed for women with higher (or lower) initial PD, participants with first episode (baseline or 

earliest episode) PD up to 10%, from 10 to <25% and ≥25% were modelled separately.  The 

frequency of participants per age group at randomisation (<55, 55 to 59, 60 to 64, and 65+) by 

initial PD were tabulated for reference.   

 

All sub-group models (e.g. age ≤60 vs > 60 years) utilised a square root transformed PD non-MI 

parsimonious model, with an exponential covariance structure except as noted above for certain 

models fitted by mammogram Version.  Hence all sub-group models are adjusted for age at 

randomisation, BMI, age at menopause, parous status and mammogram Version.  Although 

only annual change in PD from baseline to year 1 is reported for some tables, all episodes 

(baseline to year 7) were modelled to improve stability of the adjustment by mammogram 

Version, the coefficients for which can vary substantially if only a few episodes from each 

Version are modelled.  

 

7.5 Results  

7.5.1 Mammogram collection  
 

A total of 2,130 film and (original, fully electronic) digital mammograms from 541 episodes 

were collected during two rounds of collection, representing 120 Calvary Mater Newcastle 

participants.  Five-hundred of the episodes (1971 mammograms) were from follow up 0 

(baseline) to the cease of trial treatment at follow up 5 (60 months).  Forty-one episodes (159 

mammograms) were obtained from follow-up visits between five and eight year post 
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randomisation. Only one mammographic episode was collected for the year 8 (96 month) follow 

up.  This single episode was omitted from further analyses because it was unlikely to be 

representative of year 8 for all CMN participants.  Hence 2126 mammograms, comprising 540 

mammographic episodes, were utilised for Aim 4.   

 

Due to timing of mammographic episodes, mammograms for two participants which were taken 

after randomisation were designated as baseline mammograms for these participants.  One 

episode occurred 10 days post-randomisation, the other 2.5 months post-randomisation.  It is 

unlikely that measureable changes in MD occurred 10 days after randomisation, however it is 

possible that discernible changes in density may have occurred 2.5 months post-randomisation 

[258].  As discussed further below, the principal models for this Aim were undertaken with time 

modelled as the number of days from randomisation, not with time categorised as the month of 

trial follow up (0, 6, 12, 24, etc.).  The results for Aim 4 were unlikely to be affected. 

 
Mammograms dated prior to January 2009 were film-screen mammograms.  The final film 

mammogram for this data set was taken on 17 December 2008.  Mammograms from January 

2009 were digital post-processed CR (computed radiography) mammograms.  The majority of 

digital mammograms were one of three CR “versions”: Kodak Elite CR software version 5.2 

(“KE52”, 15 April 2009 to 1 March 2011); Kodak Elite CR software version 5.4 (“KE54”, 10 

March 2011 to 31 July 2012); Fuji CR (“Fuji”,14 August 2012 to 1 July 2014). Four digital 

episodes of unknown Version were assigned to Version category ‘Other’. 

 
Table 7‐1 Number of mammograms and mammographic episodes by mammogram Type and Version 

Mmg 
Type 

# Episodes  
(# Mmgs) 

% of 
 total 

#  
Pts 

Episodes per Participant 

Mean SD Median Q1–Q3  Min  Max

Film  63 (248)  12% 45 1.4 0.7 1 1–2  1  3
Digital (all)  477 (1,878)  88% 120 4.0 1.0 4 3–5  1  6
Total  540 (2,126)  100% 120 4.5 1.4 4.5 4–5  1  8

Digital Mammogram Version:
KE5.2  123 (482)  23% 94 1.3 0.5 1 1–2  1  3
KE5.4  151 (596)  28% 114 1.3 0.5 1 1–2  1  2
Fuji  199 (784)  37% 113 1.8 0.4 2 2–2  1  3
Other   4 (16)  1% 4 1 0 1 1–1  1  1

Mmg mammogram; Pts participants; SD standard deviation; Q1 1
st
 quartile; Q3 3

rd
 quartile 
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The majority of mammograms collected were digital mammograms, n=1878 (Table 7-1, above); 

248 unique film-screen mammograms from 63 episodes were also collected. The total number 

of mammography episodes per participant ranged from 1 to 8, with a mean of 4.5 follow ups per 

participant (Table 7-1).  Four sequential, annual follow ups equated to about 3 years between 

the earliest and latest episodes.  

 

The number of mammographic episodes collected for each trial follow up and mammogram 

Version are listed in Table 10-7.   

 

7.5.2 Descriptive analyses  
 

7.5.2.1 Graphs of average PD over time for all participants  

Average raw (unmodified by covariates) PD for 120 IBIS-II participants is graphed in Figure 

7-4 and Figure 7-5.  Raw, average PD (per episode) for all 120 participants from 541 episodes  

 
Figure 7‐4 Average percent density (PD, %) per participant, 0 month (baseline) to 84 months follow up 
Raw (as measured) average PD from 541 episodes (~2130/4 mammograms) from 120 Calvary Mater 
Newcastle IBIS‐II participants. The episodes show a trend to cluster around the ideal follow up time 
points at 12‐month (yearly) intervals from baseline (year 0) through 84 months (7 years).  Outlying right‐
most episode was taken at 96 months (year 8); this data point was omitted from further analyses 
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Figure 7‐5  Average percent density (PD) over time, 120 IBIS‐II CMN participants, by mammogram Type 
Graphs by randomisation year 2006‐2012.  Green circles represent film mammograms, blue circles are digital mammograms. There are 540 episodes from 120 participants. 
An expected drop in PD is seen from the transition from film to digital mammograms.  An unexpected increase in PD over time for digital mammograms is also shown. 
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(2130 mammograms) is graphed against time (months since randomisation) in Figure 7-4.  

Episodes are clustered around the yearly follow up time points, and appear to be most numerous 

for the 24 through 60 month follow ups.  Whilst the expected trend toward decreasing density 

(due to ageing and trial treatment) is apparent from baseline (month 0) through 24 months, it is 

not clear in this figure if longitudinal data from same participants are represented over these 

time points.   

 

In Figure 7-5, measurements of average, raw PD from the same participant are connected by a 

coloured line overlaid with green and blue dots to illustrate longitudinal MD by mammogram 

type (film vs digital). Participants contributing only a single episode to the data set are 

represented by a dot.  The participants are grouped by randomisation year in order to match the 

different mammographic Types (film, digital) over time. Green circles represent film 

mammograms, blue circles represent digital mammograms.A marked drop between the film 

(green dots) to digital (blue dots) transition is visible on these raw longitudinal PD trajectories.  

Digital mammogram PD also appears to increase over time for many participants (blue dotted 

lines). This latter effect is influenced by the change from KE52 to KE54 to Fuji CR 

mammograms, as described in Aim 3 (Chapter 6).  Changes to post-processing of the digital 

mammograms on the Kodak Elite (KE) and Fuji machines appear to have caused more density 

to be retained over time (Figure 6-2 and Figure 6-1).   

 

CMN IBIS-II participants reported they were fully compliant at 551 of 622 total follow up visits 

(with or without associated mammograms).  21 visits were recorded as a protocol deviation (e.g. 

“missed 7 days while on holidays”) and 24 were recorded as treatment holidays (e.g. ‘stopped 

for 5 weeks due to hot flashes’).   Cease of trial treatment was noted on 25 visits; 13 of these 

were due to side effects such as hot flushes and arthralgia, whilst 12 were due to other reasons 

including one multiple sclerosis diagnosis, one DCIS diagnosis, and two breast cancer 

diagnoses.  Treatment compliance status for the 540 follow ups with associated mammograms 
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(episodes) are listed in Table 7-2. Compliance with trial treatment was not applicable for 

baseline mammograms, and year 6 and 7 mammograms.  Of the 415 follow ups collected during 

the trial treatment period, full compliance was present for (346/415=) 83% of the episodes  

 
 
Table 7‐2 Treatment compliance reported at trial follow ups with mammograms (n=540) 

Compliance 
Status 

Follow up number (years post‐randomisation)   

0  .5  1  2  3  4  5  6  7  Total 

Not applicable  85  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ 30  10  125 

Full1  ‐‐  20  52  81  75  64  50  ‐‐  ‐‐  342 

Deviation2  ‐‐  2  1  4  0  0  1  ‐‐  ‐‐  8 

Tx Holiday3  ‐‐  3  4  1  2  2  0  ‐‐  ‐‐  12 

Ceased 
Permanently 

‐‐  0  3  7  14  16  13  ‐‐  ‐‐  53 

Total  85  25  60  93  91  82  64  30  10  540 
1 Full compliance: missed ≤3 consecutive pills or ≤14 pills total per year) 
2 Deviation: missed >3 consecutive pills or > 14 pills total per year 
3 Tx (treatment) holiday: a planned break from trial medication (e.g. due to side effects) 
 
 
 

7.5.2.2 Distributions of PD, DA, BA, and AA 

Figure 7‐6  Histograms of PD, DA, BA and AA baseline and follow up mammograms 
120 IBIS‐II CMN participants.  A right skew is present in all histograms, which is more pronounced for the 
PD and DA distributions (upper row) than for BA and AA (lower row).   

 

0
2

5
5

0
7

5
1

00
1

25
1

50
1

75
2

00
2

25
F

re
q

ue
nc

y 
(#

)

0 20 40 60 80
Percent Density (%)

Percent density, 2130 baseline and follow up mammograms

0
2

5
5

0
7

5
1

00
1

25
1

50
1

75
2

00
2

25
F

re
q

ue
nc

y 
(#

)

0 5000 10000 15000
Dense Area in mm2

Dense Area, 2130 baseline and follow up mammograms

0
2

5
5

0
7

5
1

00
1

25
1

50
1

75
2

00
2

25
F

re
q

ue
nc

y 
(#

)

0 10000 20000 30000 40000 50000
Breast Area in mm2

Breast Area, 2130 baseline and follow up mammograms

0
2

5
5

0
7

5
1

00
1

25
1

50
1

75
2

00
2

25
F

re
q

ue
nc

y 
(#

)

0 10000 20000 30000 40000 50000
Adipose Area in mm2

Adipose Area, 2130 baseline and follow up mammograms



Chapter 7 

244 

collected for this analysis.  A “per-protocol” treatment sensitivity analysis of 117 participants 

and 447 episodes (including baseline mammograms, deviations and treatment holidays) up to 

three months after trial treatment ceased is presented in Chapter 8 (Table 8-16).  

 

PD and DA had a pronounced right skew, whilst BA and AA were more normally distributed 

(Figure 7-6). Film mammograms had the highest median PD and DA, whilst KE52 

mammograms had the lowest median PD and DA (Figure 7-7, Table 7-3 ).  Median PD and DA 

increased for KE54 mammograms, and the medians for these MD parameters were higher again 

for the Fuji mammograms. 

 

Figure 7‐7 PD, DA, BA and AA by mammogram version over time.   
PD for film mammograms is more evenly dispersed over the possible range of values for PD (0 to 100%) 
than PD for digital mammograms; the distribution range for DA is also correspondingly higher for film 
mammograms than for the digital mammograms.  Digital mammograms show a trend towards 
increasing PD and DA over time which is likely due to changes in software and hardware configuration.  
An increase in BA over time due to changes in digital mammography version or age related factors (e.g. 
increased compressibility of the breast) may also be present, whilst the opposite may be true for AA.   
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Median PD differed by about 2% between CR mammography Versions (Kodak Elite v5.2, 

Kodak Elite v5.4, Fuji), double the expected change in longitudinal PD of approximately (–)1% 

per annum.  The increasing trend in PD over time also opposes the anticipated decrease in PD 

over time.  As stated previously, this implied mammogram Version would need to be taken into 

account when analysing longitudinal MD in this dataset. 

 

Table 7‐3 Number of episodes, MD measures of central tendency, by mammogram Type and Version 

Parameter  N  PD (%)  DA (mm2) 
BA 

(mm2) 
AA 

(mm2) 
PA

(mm2) 

    Median (25th‐75thpercentiles)  Median 

All mammograms   540  15.6 (8‐23) 2576 (1400‐4032) 17354  14377  84.4
Film mammograms†  63  22.4† (12‐31) 3383† (1615‐5539) 16493††  12524†  77.6†
Digital (CR)‡ 477  15.0 (8‐22) 2456 (1337‐3853) 17384  14642  85.0
   Kodak Elite v5.2  123  13.0‡ (7‐18) 2119‡ (1143‐3031) 17376  14892  87.0‡

   Kodak Elite v5.4  151  15.7‡ (8‐21) 2553‡ (1239‐3868) 17222  14481  84.3‡

   Fuji  199  17.3‡ (9‐24) 2879‡ (1634‐4151) 17455  14622  82.7‡

   Other  4  31.8 (6‐65) 5532 (1194‐10618) 16496  11833  68.2 

† PD and PA differ for film vs digital mammograms, p<0.001; Significant differences between film and 
digital mammograms are also found for DA (p=0.009) and AA (p=0.02); Wilcoxon’s rank‐sum test  
†† BA does not differ for film vs digital mmgs, p=0.45, Wilcoxon’s rank‐sum (Mann Whitney) test 
‡ KE52, KE54 and Fuji CR mammograms differ from each other significantly for PD, DA, PA, p<0.01, 
Kruskal‐Wallis test (p>0.75 for BA, AA); The Cuzick non‐parametric trend test was significant for trend 
for PD, DA, and PA measured on these CR mammograms, p<0.003 
 
 

7.5.2.3 Review of the variability in PD measurements  

Line plots of average PD were inspected for unusual (>5 to 10%) differences in average PD for 

sequential mammograms for participants.  Mammograms from 13 participants were re-

measured with the Cumulus program to reduce within-individual longitudinal differences in 

density which likely resulted from assessing Collection 1 and Collection 2 mammograms at 

different times.  Substantial longitudinal variation in PD between and within Versions remained 

after PD re-measurement for the 13 participants (Figure 7-8). This may have occurred due to the 

inherent variability of the subjective assessment technique, or potentially due to differences in 

image acquisition and/or post-processing (other than differences due to Versions), or other 

factors such as the positioning of the breast during mammography [416], which may sub-

stantially change the appearance of the dense tissues on mammograms (i.e. >10%PD change). 
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PD and DA had a pronounced right skew, whilst BA and AA were more normally distributed 

(Figure 7-6). Film mammograms had the highest median PD and DA, whilst KE52 

mammograms had the lowest median PD and DA (Figure 7-7, Table 7-3 ).  Median PD and DA 

increased for KE54 mammograms, and the medians for these MD parameters were higher again 

for the Fuji mammograms. 

 

Median PD differed by about 2% between CR mammography Versions (Kodak Elite v5.2, 

Kodak Elite v5.4, Fuji), double the expected change in longitudinal PD of approximately (–)1% 

per annum.  The increasing trend in PD over time also opposes the anticipated decrease in PD 

over time.  As stated previously, this implied mammogram Version would need to be taken into 

account when analysing longitudinal MD in this dataset. 

 

 
Figure 7‐8 Avg PD over time by digital (CR) mammogram Version 
Average (unadjusted) PD tended to increase over time for digital mammograms and was related to the 
software and hardware version of the CR mammography machine used.   
 

The analysis for Aim 3 (Baseline characteristics, Chapter 6) was not re-performed with the 

updated measurements for the 13 participants because longitudinal data was not required for 
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Aim 3.  The subjective nature of the Cumulus assessments means that any reasonably consistent 

set of measurements—as shown in Aim 2 (Chapter 5, reliability analysis)— is likely to be as 

valid as another set of similar measurements. 

 

7.5.3 Three level mixed model results   
 
The individual mammographic density measurements (one per mammographic View) were 

originally utilised as the observations (units) which formed the bottom level of the data 

hierarchy.  The model development strategy used for the two level mixed model described in 

sections 7.4.3 to 7.4.7 was also used to develop the three level mixed model, with the exception 

of section 7.4.6 (covariance structure selection); the covariance structure could not be modified 

for the three level model due to (within episode, or within Version) repeated times at the lowest 

level of the model. The model coefficients for the set of PD, DA and BA three level mixed 

models are listed in two appendices (Three-Level Unconditional Means and Unconditional 

Growth Models, Three-Level Full and Parsimonious Models of PD, DA and BA). The three 

levels modelled are: participant (level 3), (episodes or) mammographic Version (level 2), and 

mammographic Views (level 1).   

 
The results for the three level model are similar to the results for the two level model.  Both the 

two and three level all mammograms models show a decrease in annual PD and DA change for 

baseline to year 1, an increase from years 1 to 5, and negligible change for years 5 to 7. How-

ever, the rate of annual change is larger in magnitude for the 2 level model from baseline to year 

1, but smaller for years 1 to 5 (i.e. MD does not increase as quickly). This may imply that use of 

average MD per episode (in the two level model) helped to stabilised the longitudinal measure-

ments.  The film only model rates of change are almost identical for both sets of models.  Larger 

differences between the two and three level models are noted for PD and DA for the digital 

mammogram only models.  The magnitude of annual rate of change for baseline to year 1 and 

years 1 to 5 is larger in the three level digital only models.  Whilst the two level baseline to year 

1 all mammogram model rates of change for PD and DA are intermediate between the rates of 
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change for the film and digital only models, evidence of potential confounding is present for the 

three level model.  The annual rates of decline for PD and DA from baseline to year 1 for the 

three level film only and digital only models are greater in magnitude than the three level all 

mammogram models, which should be in between those for film and digital. 

 
The three level model has higher “within person” variance, approximated by summing both the 

level-1 (residual, within Version) variance and the level-2 between mammogram variance.  This 

is likely due to the use of all four Views instead of average MD per episode.  The estimated 

variability of the between person intercept for the three level model is also higher than the 

between person intercept for the two level model.  However, total between person variability for 

the two level model (approximated by the sum of the variances for the between person intercept 

as well as the random slope variances for film and Fuji mammograms) is higher than the sum of 

the three level variances for baseline to year 1 random slope and intercept.  The higher between 

person variability for the two level model may mirror the improved efficacy of the model to 

more accurately allocate sources of random variability.  For example, although the coefficient 

estimates for the parsimonious model of square root transformed PD are similar for age at 

randomisation for the two and three level models (–0.04), the p-value for the two level model is 

less than 0.01, whilst the p-value for the three level models is between 0.05 and 0.1.  The SE for 

age at randomisation in the two level model are therefore smaller. This appears to indicate that 

the two level model has improved main effects efficiency (precision) via a decrease in (FE) SE 

variability, by ascribing that variability to RE sources. 

 

7.5.4 Unconditional means models for longitudinal PD, DA, BA  
 
The unconditional means model of MD contained only participant group as an explanatory 

variable in the model. A graph of the estimates for the untransformed PD unconditional growth 

model is shown in Figure 7-9.  The fixed effect and random effect components are all constants; 

hence all participants’ estimated trajectories are flat, which therefore results in a flat trajectory 
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for the Grand Mean of the model (red solid line). The observed (measured) trajectory for one 

participant is also included on the graph as a fine, dotted green line. 

 

Coefficients for the different PD, DA and BA unconditional means models are listed in Table 

7-4.  Each participant’s true mean PD (or DA or BA) varied around their own mean PD on av-

erage by the within person variance, and each participant’s own mean PD varied on average a-

round the PD ‘Grand Mean’ by the between-person variance. For example, the grand mean for 

PD was 16.7%, PD between person variance was 131, & the PD within person variance was 17. 

 

 
Figure 7‐9 Unconditional means model: Grand mean ± SE w/participant observed & fitted trajectories  
The PD grand mean for the unconditional means model is the mean of all PD measurements for all 
participants (16.7%).  The SE limits for the grand mean (1.1%) is shown as dashed lines above and below 
the grand mean.  The observed trajectory for one participant is shown with green dots.  The 
participant’s fitted trajectory (grand mean + the best linear prediction from the between‐person RE for 
the participant) with SE limits is shown as a thin solid green line with dashed green lines above the red 
line of the grand mean of the model. The modelled lines are flat because PD is the sole parameter in the 
model (e.g. time and other parameters have not yet been added to the model). The SE for the fitted 
participant values (green dashed lines) may be smaller than expected when compared to the observed 
PD (dotted green line) for the participant because they are for best linear unbiased predictions (BLUPs). 
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The calculated ICCs in Table 7-4 for PD and DA range from 0.89 to 0.90, hence the correlation 

between follow ups for each participant is high, and only a small proportion of the variability of 

the density measurements is due to within person differences in MD.  This likely implies that 

the change in MD over time is small per person compared to the between person differences in 

MD, although more generally, it could indicate between person variability was just very high 

compared to within person variability.  The ICC for BA is high (0.98), which likely implies BA 

tends to be stable over time.  This inference is supported by the increase of the ICC to 0.99 after 

adjustment of the BA model with FE and RE for mammogram Version (results not shown); this  

adjustment appears to have further increased the stability of BA over time. Unconditional means 

model ICCs for film mammogram only were ~0.98 for PD and DA, and 0.98 for BA; ICCs for 

 
 
Table 7‐4 Mixed modelling coefficients, unconditional means models for PD, DA and BA 

Covariate 
 PD 
 % 

 PD square 
 root 

 PD natural
log 

DA
 mm2 

DA square 
root 

BA
 mm2 

BA square 
root 

ALL MMGS, 541 episodes1, 120 participants 

FE Intercept   16.7***   3.78***   2.44*** 2920*** 50.0***  19006***  135*** 

RE variance estimates
Between 
person 
intercept 
(initial status) 

 131   2.0   0.89   4.1x106   357   52x106   664 

Within person    17   0.24   0.10 0.53x106 39 1.3x106  14 
ICC    0.89   0.89   0.90 0.89 0.90 0.98  0.98 

Model fit estimates

Log Likelihood  ‐1750  ‐594  ‐356 ‐4545 ‐1979 ‐4883 ‐1812 
AIC   3505   1195   717 9095 3965 9773  3631 
BIC   3518   1208   730 9108 3978 9786  3643 

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2 
1The unconditional means model coefficients differed slightly for MD averages of all 2130 
mammograms, e.g. average PD for 2130 individual mammograms yielded an intercept of 16.7%, with a 
between‐person variance of 134 and within‐person variance of 25. This equated to an ICC of 0.84. 

 

digital mammograms only models were ~0.92 for PD and DA, and 0.98 for BA (results not 

shown). The lower PD and DA but not BA ICCs for the digital only models reflect the 

differences in MD caused by differences in post-processing of the digital images. All ICCs are 

high, hence the density measurements are also highly auto-correlated within participants over 

time.  However this likely implied that the aggregate (treated + control) change in PD and DA 

due to trial treatment also was small.  All RE variance estimates were significant. This meant 
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additional covariates could be added to the model to explain (reduce) the variability of the 

between- and within-person variances.   

 

7.5.5 Unconditional growth models for longitudinal PD, DA, BA  
 
Time as a fixed effect in the model allowed the estimated average MD for all participants to 

change over time— the trajectory is no longer flat. The inclusion of time as a RE in the model 

allowed each participant to have a unique growth curve which varied from the slope of the 

grand mean growth curve.  Figure 7-10 illustrates this for a different participant from that 

shown in Figure 7-9.  The coefficient estimates for the PD, DA and BA models are tabulated in 

Table 7-5.   

 
Figure 7‐10 Unconditional growth model, Grand Mean growth curve with observed & fitted PD for a 
participant 
The average unconditional growth curve for all participants (± SE) is shown in maroon, whilst the 
observed (as measured) PD and fitted PD (± SE) are shown for a participant in green.  This participant 
differs from the participant whose mean trajectory is shown in Figure 7‐9. Time is modelled as a 
categorical variable. The modelled growth curves now change over time (because time has been added 
as a parameter to the model). Approximately half (0.47) of the within person variability is explained by 
the addition of time to the model (Table 7‐5), implying the model has improved fit compared to the 
Unconditional means model (which does not include time as a parameter).   
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The model now contained two fixed effects, a constant and a slope (change over time) which 

comprised the ‘mean (average) structure’ for the model, shown in red in Figure 7-10.  The FE 

intercept (constant) represented the Grand Mean (averages) of all participants’ baseline density 

measurements. The intercepts were 18.2% (categorical time) and 16.1% (continuous time) for 

PD, Table 7-5. The FE time parameter coefficients represented the average change over time for 

all participants.  More specifically, the categorical time coefficients estimated the mean change  

 

Table 7‐5 Mixed modelling coefficients, unconditional growth (time only) models for PD, DA and BA 

Covariate 
PD 
% 

PD square 
root 

PD natural 
log 

DA
mm2 

DA square
root 

BA
mm2 

BA square 
root 

ALL MMGS, 541 episodes, 120 participants

Categorical time FE estimates

Months since 
randomisation 

0 (ref)  0 (ref)  0 (ref)  0 (ref)  0 (ref)  0 (ref)   0 (ref) 

6  ‐2.1***  ‐0.20*  ‐0.03 ‐341* ‐2.3* 515*  1.7* 
12  ‐2.3***  ‐0.26***  ‐0.11** ‐411*** ‐3.3*** 235  0.9 
24  ‐3.0***  ‐0.31***  ‐0.11** ‐559*** ‐4.0*** 217†  0.9 
36  ‐2.0**  ‐0.18*  ‐0.01 ‐299** ‐1.7 541**  2.0** 
48  ‐0.60  ‐0.03   0.04 ‐144 ‐0.24 400  1.4* 
60   1.7*   0.25*   0.20** 295* 0.7** 633*  2.1* 
72   3.2**   0.41**   0.26** 478* 5.3** 699*  2.3* 
84   6.8***  0.80***   0.47*** 1026* 10** 1015*  3.3* 
Intercept  18.2***   3.9***   2.4*** 3170*** 48*** 18626***  134 

Continuous time FE estimates

Change per 
year 

  0.28    0.04*   0.04*   46   0.64*  106   0.36 

Intercept    16.1***    3.7***   2.4*** 2817*** 48*** 18723  134 

Continuous time RE variance estimates
1

Between person        
Time (years)   1.5   0.02   0.01 38648 3.2 105316  1.3 
Intercept   149   2.3   1.1 4.8x106 417 51x106  651 
Covariance  ‐5.2  ‐0.08  ‐0.05 ‐181832 ‐16 147065  1.1 
Within person   11.4   0.16   0.06 0.38x106 27 0.82x106  9.2 
Correlation 
coefficient 

‐0.35  ‐0.37  ‐0.48  ‐0.42  ‐0.44  0.06   0.04 

Continuous time estimates of the within‐person (WP) reduction in variability
(Unconditional growth model compared to unconditional means model, re Equation 7‐3) 

Change in WP 
variability 

0.49  0.50  0.67  0.39  0.44  0.59  0.52 

Continuous time model fit estimates1

Log Likelihood  ‐1711  ‐561  ‐322 ‐4512 ‐1947 ‐4829 ‐1765 
AIC   3435  1133   657 9036 3907 9671  3542 
BIC   3460  1159   682    9062 3233 9696  3568 

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2 
Numbers shown are the values output by the statistical program 
1The estimates for categorical time models are similar to those for continuous time.  The continuous 
time estimates are shown for comparability with later tables. 
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in MD at that time point relative to baseline.  The continuous time coefficient estimated the 

mean linear change for all participants from baseline to year 7.  For PD, the average continuous 

change per year was estimated as 0.28% (an average increase over time from baseline to year  

7), whilst at 6, 12, 24 and 36 months post-randomisation the average (unconditional) change in 

PD for the categorical time variable was estimated as a significant –2 to –3%  decrease from 

baseline.  PD also showed an average increase from baseline at 60, 72 and 84 months of 1.7%, 

3.2% and 6.8%.  These latter increases account for the slight but positive increase in annual PD 

per year for the coefficient for continuous time (0.28%). 

 

Two RE were now included in the model: a random slope for each participant and a random 

intercept for each participant.  The random intercept allowed each participant to have a different 

baseline PD from the grand mean (FE intercept). Similarly, the random slope allowed each 

participant to have their own growth curve which differed from that of the grand mean growth 

curve shown in red in Figure 7-10. 

 

As described in section 7.4 Statistical Methods, the fitted intercept for the participant shown in 

Figure 7-10 (solid green line) was estimated by the model by adding a RE ‘Best Unbiased 

Linear Prediction’ (BLUP) for that participant to the Grand Mean (FE intercept).  Similarly, the 

random slope for the participant was modelled by estimating a RE BLUP for each category of 

time which was added to the mean FE for each time category to derive a ‘fitted’ growth curve 

for the participant.   

 

As per Table 7-5, change over time appeared to significantly decline from baseline to 24 months 

for PD and DA, but then increase through 84 months.  The model of untransformed BA showed 

a non-monotonic increase in area from baseline of about 500 mm2 for most follow ups.  This 

equated to an annual increase of 106mm2 for each year of the trial, in part driven by the 

modelled increase in BA of more than 500 mm2 at the 60, 72 and 84 month follow ups. 
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A between person covariance was also fitted to the RE of the model.  As described previously, 

this covariance quantified the population covariance between initial status (baseline PD) and 

change over time.  PD and DA both showed significant negative covariances, which implied 

women with higher baseline PD tended to decrease in PD over time more than women with 

lower initial PD.  As for covariance, PD and DA also showed a significant negative correlation 

over time.  In contrast, the (more stable) BA had small (<0.7) non-significant positive 

correlations between initial BA and change over time.   

 

As per Equation 7-3 in the Statistical Methods section, change in within person variability for 

PD% after time was added to the model was (17-11.4)/11.4 = 0.49.  This meant about half of the 

unconditional within-person variability for PD was explained by the addition of time to the 

model.  Within person variability reduction estimates for DA were slightly smaller than for PD: 

0.39 and 0.44 for untransformed and square root transformed DA respectively.  BA within per-

son variability was also approximately reduced by half with the addition of time to the model. 

 

The RE for change over time (time) and initial status (intercept) were significant for all of the 

MD parameters.  This implied that participants differed from each other enough not only in 

average offset from the Grand Mean growth curve (as indicated by the significant variance 

estimate for the within person intercept), but their individual growth curves also differed from 

each other sufficiently to produce significant RE for change over time.  Within person 

variability was also significant, implying further covariates could be added to explain within 

person variability. The statistics for model fit—log likelihood (LL), AIC and BIC— were 

smaller (closer to 0) for the unconditional growth model vs the unconditional means model.  For 

example, the BIC decrease for the square root transformed PD unconditional means model to 

the unconditional growth model provided very strong (>10 units) evidence of an improvement 

in fit: the BIC decreased from 1208 to 1159, a 49 unit difference.  This implied model fit was 

greatly improved with the addition of time to the model. 
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7.5.6 Modelling time  
 
Initial models with one continuous parameter for time from years 0 to 7 were found to be 

inadequate for PD and DA.  This was due to the within person drop in average PD from film to 

digital mammograms (e.g. PD trajectory decline from green dots (film) to blue dots (digital), 

Figure 7-5), as well as the increase in average PD over time which was related to change in 

digital mammogram software and hardware configuration (e.g. Figure 7-7, Figure 7-10).  A 

single linear trajectory for continuous time was not able to accommodate the u-shape which 

often resulted from the film to digital transition and/or initial decline in breast density due to 

trial treatment. Use of categorical time rather than continuous time was unsatisfactory (not 

parsimonious) due to the number of categories (nine).  Hence a linear spline with two or more 

segments that could change slope at one or more cut points (knots) was fitted to the model. 

Potential cut points for continuous time were initially determined by examining the magnitude 

of change in PD and DA at each categorical time point.  Two times of best fit (1.0 and 1.25 

years) maximised the slope of change in MD over time from baseline compared to other cut 

points between 0.5 and 2.5 years examined by modelling 0.25 year (3 month) increments.   

 

The largest change in PD from baseline to a later time point was observed when a cut point at 1 

year post-randomisation was utilised in the model. No further decreases in PD were found from 

1.0 years to 5 years of follow up, however a slight increase in linear change over time was 

noted. Hence a second linear relationship between 1 and 5 years post-randomisation was 

modelled.  The remaining time during years 5 to 7 was modelled with an additional linear 

segment, to reflect the theoretical rebound in PD and DA after the cease of anastrozole 

treatment at year 5 (Figure 7-1).   

 

No evidence was found of a significant higher order effect of time (e.g. quadratic (time2), cubic 

(time3) relationship) in addition to the significant linear relationships modelled for the 0 to 1 

year or 1 to 5 year time periods. Modelling of the change over time between 1.0 or 1.25 to 5 
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years post-randomisation in 0.5 year increments showed that a single segment from 1.0 (or 1.25) 

to five years was adequate.  RE slopes at the level of person (i.e. between person RE) for the 

first two time segments were significant for models of PD and DA, and were retained in the 

model along with the RE between person constant.  The random slope variance for the third 

segment (years 5 to 7) was not significant. 

 

Models for BA showed that a single continuous growth curve (slope/line) from baseline to year 

7 was sufficient, however BA was modelled with all three segments of continuous time for 

consistency with PD and DA. 

 
 

7.5.7 Forward and backward covariate selection   
 
Strong (6 to 10) or very strong (>10) changes in the BIC [493] during FE parameter 

addition/removal was noted for the covariates BMI, CC vs MLO (in three level models) and 

Version. Strong changes in the BIC were not observed for other covariates.  Because of the 

small sample size, the BIC and AIC were sometimes at odds during stepwise comparison of 

models.  The removal or addition of one covariate in the models often yielded differences in 

AIC greater than 2, but would change the BIC by less than 3.  To create more parsimonious 

models, selection of covariates based on the BIC outcome was undertaken.  

 

As stated previously, age at randomisation was retained in all final models, regardless of 

significance or coefficient sign, because age is a well-recognised, strong modifier of MD.  

Interestingly, removal of age at randomisation from most PD models increased AIC >2 (worse 

model), whilst decreasing BIC (improved model).   

 
 

7.5.8 Covariance structure selection 
 
Substitution of the exchangeable and unstructured covariance structures for the default structure 

(independent) resulted in non-convergence of the mixed model. The banded structure (a special 
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case of the unstructured covariance specification) was modelled with a single band of off-

diagonal covariance estimates.  The banded structure model converged, but the SE for the RE 

parameter estimates were not calculated.  This may have occurred because the SE were too 

small (or too large) to be estimated by the statistical program.  This problem showed that the 

banded covariance structure did not suit the model.   

 

Of the models which converged properly, the BIC scores were similar for the AR, 

exchangeable, MA, and toeplitz structures (within ±3 of each other).  Models with single 

covariance coefficients for the AR, MA, banded and toeplitz structures (e.g. toeplitz 1, first off-

diagonal band covariance only) had lower BIC than those with higher numbers of (higher-order) 

covariance coefficients— e.g. toeplitz 2, which estimates both the first and second off diagonal 

bands in the variance-covariance matrix; all other off diagonal bands are set to 0.  

 

The RE for time (the random slopes modelled for each participant) became non-significant 

when the AR, exponential and other covariance structures were incorporated into the model.  

Therefore time was omitted as a RE at the level of participant from the model.  This meant that 

growth curves for all participants now paralleled the Grand Mean growth curve (represented by 

the coefficients for time in the FE portion of the model).  Individual participants’ MD 

trajectories were no longer allowed to differ from the Grand Mean growth curve.   The lack of 

significance for the RE for time indicated that the (between person) MD trajectories for the 

participants did not differ substantially from one another; this potentially indicated the lack of a 

strong treatment effect between the treated and control groups, which might be detected as 

between person heterogeneity over time by the model. 

 

Another potential reason the non-significance of the random slope time parameter was the 

frequent change from one mammographic Version to the next; these changes in mammographic 

Version may have caused differences in MD growth for participants which did not coincide 

with the cut points (change points) of the continuous spline for time.  The indicator parameters 
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for each mammogram Version were used to model (account for) potential random effects of 

Version on the model at the level of participant.  All possible different combinations of the four 

parameters were modelled as RE: all four simultaneously, different sets of three, different pairs, 

and individually.  The KE52 and KE54 RE were consistently found to be not significant, but the 

RE slopes for film and Fuji Version were consistently significant, whether modelled 

individually or with other mammogram Version RE.  Inclusion of the RE slopes for film and 

Fuji mammogram Version reduced the BIC score substantially (>35) despite the increase in 

complexity due to two additional parameters. Hence these RE slopes appeared to be quite 

beneficial in accounting for between person heterogeneity.  Re-introduction of the between 

person RE for time to the model with the RE for film and Fuji Version did not achieve 

significance for the RE slope for time.  Further simplification of the model by utilising a single 

random effect (i.e. a single indicator) for both film and Fuji mammograms increased the BIC by 

more than 3 (indicating worse fit).  The final model therefore includes separate RE for Film and 

Fuji mammograms at the level of participant. 

 
Table 7‐6 Covariance structure comparison of naïve vs robust Standard Errors 

Covariate 

Ratio of default SE to robust SE, for different covariance structures 

Independent 
Auto 

Regressive 1 
Exponential 

Moving 
Average 1 

Toeplitz 1 

Age at Rand. (yrs)  1.23  1.24 1.23 1.24 1.24 
BMI (kg/m2)  1.09  1.09 1.09 1.09 1.09 
Menopause (yrs)  1.04  1.04 1.04 1.04 1.04 
Age First Birth <30y  ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ 
 ≥ 30 years    1.33⁺   1.35⁺  1.35⁺  1.35⁺   1.35⁺ 
Non‐parous    1.57⁺   1.59⁺  1.59⁺  1.60⁺   1.60⁺ 

Mammogram 
Version5‐ film 

‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

 KE52  0.80  0.80 0.82 0.82 0.82 
 KE54  0.87  0.84 0.87 0.84 0.84 

    Fuji  0.92  0.88 0.91 0.89 0.89 
Intercept  1.20  1.21 1.21 1.22 1.22 
   Baseline to Year 1  0.95  1.00 1.00 1.00 1.00 
   Years 1 to 5  1.04  1.06 1.07 1.05 1.05 

⁺ Values outside of the acceptable range of 3/4 to 4/3  

 

The ratio of the FE default SE to robust SE for each model was inspected to see if it exceeded 

the interval from 3/4 to 4/3 [494], Table 7-6.  With the exception of the parameter which had 

small cell sizes in two categories (age at first birth ≥30 years and non-parous women), the naïve 
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SE to robust SE ratios of the FE for the AR, exponential, MA, toeplitz as well as the default 

covariance structure (independent) were within the 3/4 to 4/3 limits.  The SE ratio for age at first 

birth ≥ 30 years was 1.33 to 1.35, and 1.57 to 1.59 for age at first birth = non-parous.  The FE 

SE ratios for other covariates for all the covariance structures were also quite similar to each 

other (e.g. 1.09 for BMI). 

 

The toeplitz, MA and AR structures assume equal spacing between all occasions (follow ups).  

Figure 7-4Error! Reference source not found. showed fairly regular spacing for most but not 

all participants.  The exponential covariance is a generalisation of the AR model which allows 

for unequal spacing of occasions 

as well as non-integer values for time.  The exponential structure consistently had non-signif-

icantly but slightly higher BIC scores (~2) than the BIC scores for AR(1) models.  Due to 

irregular spacing of some mammographic episodes as well as gaps in follow ups, the exponent-

tial variance-covariance structure was selected as the preferred residual structure for the data. 

 

As described in section 7.4.6 Covariance structure selection, forward selection for significant 

covariates was repeated using ML estimation.  The set of parsimonious covariates remained the 

same before and after covariance structure testing for square root transformed PD and DA, 

however square root transformed BA gained three significant covariates in addition to BMI: age 

at menarche, AFB and smoking status.   

 

VIF testing of ‘first mammogram’ multivariable parsimonious square root transformed PD and 

DA regression models did not find evidence of collinearity between age at randomisation and 

age at menopause, nor between any of the model covariates.  Removal (separately) of the two 

age related parameters (age at randomisation and age at first birth) from (non-MI) parsimonious 

square root transformed PD model yielded models similar to the (non-MI) original model with 

both age related parameters; coefficient values and SE did not greatly differ between these 



Chapter 7 

260 

models except for the age at first birth parameter due to the small cell sizes of two of its 

categories.   

 

Differences in the BIC, AIC and LL, however, were noted between the PD and DA models 

fitted with only one of the age related covariates, as well as these models and the original 

models fitted with both age related covariates. The BIC was lowest (not significantly, by 1 unit) 

for the PD model which retained age at menopause but not age at randomisation; log likelihood 

and AIC values were lowest (in absolute value) for the original model with both coefficients.  

The AIC was lower significantly (–3 units) for the original PD model compared the model with 

age at menopause alone.  The PD model with age at randomisation alone showed significantly 

worse BIC values (+8) and AIC values (+11) compared to the original parsimonious model with 

both covariates.  A slightly different trend was noted for (non-MI) square root transformed 

models of DA.  Whilst the coefficients did not change very much between the models, BIC was 

significantly lower (–4) for model with age at menopause only compared to the original model 

with both age related covariates but the AIC and LL were almost identical.  The model with age 

at randomisation alone had significantly higher BIC (+8), AIC (+12) and larger magnitude LL 

(+7) than the original (non-MI) parsimonious square root transformed DA model.  Age at 

randomisation was significant for the PD square root transformed models, but not for the DA 

models. Although an a priori decision was made to retain age (at randomisation) in all models of 

PD and DA, the retention of both age related may not have been necessary, especially for the 

DA model; use of the Deviance statistic (–2LL), the method favoured by Singer and Willet 

[490], may have indicated age at menopause alone provided the most parsimonious model with  

adequate fit. 

 

7.5.9 Full and parsimonious models of PD, DA and BA    
 
The ‘full’ models contain a mix of significant (p<0.05) and non-significant parameters, Table 

7-7.  Age at randomisation, BMI, age at menopause and age at first birth ≥ 30 years had p-  
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Table 7‐7 Longitudinal MD full and parsimonious multivariable mixed linear model regression coefficients  

Covariate 
PD %  PD square roota DA mm2 DA square roota  BA mm2 BA square roota

Full  Parsimon  Full Parsimon Full Parsimon Full Parsimon Full Parsimon Full Parsimon

ALL MAMMOGRAMS
120 participants 540 episodes (follow ups) 

Age at Rand. (yrs)  ‐0.29  ‐0.26  ‐0.05* ‐0.04** ‐44† ‐31 ‐0.58 ‐0.4‡  118 ‐‐ 0.5† ‐‐            
BMI (kg/m2)  ‐0.81***  ‐0.82***  ‐0.11*** ‐0.12*** ‐18 ‐‐ ‐0.34 ‐‐  990*** 965*** 3.6*** 3.4***
Menarche (yrs)   0.23   ‐‐   0.03 ‐‐ 113† ‐‐ 1.0† ‐‐  471† 500 1.8‡ 2.0
Menopause (yrs)   0.38**  0.36**   0.06** 0.06** 81** 75** 0.92**  0.85**  44 ‐‐ 0.2 ‐‐        
Age First Birth <30y   ref.   ref.   ref.  ref. ref. ref. ref.  ref.  ref. ref. ref. ref.
 ≥ 30 years   8.2*   8.3*   1.0** 1.1** 2659** 2603** 22***  22**  4621* 4376* 15* 14*  
Non‐parous  ‐1.3  ‐0.97  ‐0.10 ‐0.05 398 492† 3.8  5.4  3580 3252‡ 13 12

OC use ‐ Never   ref.   ‐‐   ref.  ‐‐ ref. ‐‐ ref.  ‐‐  ref. ‐‐ ref. ‐‐
   Ever users  ‐2.0   ‐‐  ‐0.32 ‐‐ ‐563 ‐‐ ‐5.7  ‐‐  243 ‐‐ ‐‐ ‐‐
HRT – Never   ref.   ‐‐   ref.  ‐‐ ref. ‐‐ ref.  ‐‐  ref. ‐‐ ref. ‐‐
  Ever users   0.03   ‐‐   0.05 ‐‐ ‐85 ‐‐ ‐0.6  ‐‐  ‐946 ‐‐ ‐4 ‐‐
Smoking‐ never   ref.   ‐‐   ref.  ‐‐ ref. ‐‐ ref.  ‐‐  ref. ref. ref. ref.
Current   1.2   ‐‐   0.27 ‐‐ 653 ‐‐ 7.9*  ‐‐  4150* 3769* 14* 13*  
Ex‐smoker   0.64   ‐‐   0.12 ‐‐ ‐17 ‐‐ 0.6  ‐‐  ‐727 ‐862 ‐2.1 ‐2.8

IBIS‐1 – No   ref.   ‐‐   ref.  ‐‐ ref. ‐‐ ref.  ‐‐  ref. ref. ref. ref.
   Yes   0.49   ‐‐   0.19 ‐‐ 162 ‐‐ 2.6  ‐‐  ‐568 ‐‐ ‐2.2 ‐‐
Mammogram 
Version‐ film 

 ref.   ref.   ref.   ref.   ref.   ref.   ref.   ref.   ref.   ref.   ref.   ref. 

 KE52  ‐6.6***  ‐6.6***  ‐0.76*** ‐0.76*** ‐1233*** ‐1234*** ‐10*** ‐10***  ‐62† ‐63‡ ‐0.11† ‐0.12†
 KE54  ‐4.5***  ‐4.5***  ‐0.48*** ‐0.48*** ‐859*** ‐864*** ‐6.6*** ‐6.6***  38 36 0.25 0.24

    Fuji  ‐2.7*  ‐2.7*  ‐0.29 ‐0.29 ‐638* ‐648* ‐4.5* ‐4.6*  ‐267 ‐269 ‐0.82 ‐0.84
Intercept   31***   27***   5.7*** 5.2*** 5290*** 3967*** 74***  60***  13929*** 13996*** 119*** 118***

Annual change in MD (All mammograms)
Baseline to Year 1  ‐1.06**  ‐1.06**  ‐0.13** ‐0.13** ‐196** ‐194** ‐1.6** ‐1.6**  194 197 0.66 0.68
Years 1 to 5   0.36*   0.37*   0.04 0.04 98* 100* 0.79*  0.81*  144 145 0.48 0.49
Years 5 to 7  ‐0.17  ‐0.17  ‐0.02 ‐0.02 ‐4.32 ‐3.78 0.05  0.05  312 311  1.09 1.09
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Covariate 
PD %  PD square roota DA mm2 DA square roota  BA mm2 BA square roota

Full  Parsimon  Full Parsimon Full Parsimon Full Parsimon Full Parsimon Full Parsimon

Random effects  – estimates for between‐ and within‐person change

Between person  variance       
Film mmgs   5.4   5.4   0.5  0.5 1023 1027 7.0  7.1  1607 1613 4.8 4.9
Fuji mmgs   2.7   2.7   0.4  0.4 524 523 5.2  5.2  749 753 2.5 2.5
Intercept   9.4   9.4   1.1  1.1 1739 1773 16.1  16.6  4523 4595 16.3 16.6

Within person 
correlation (rho) 

 0.6   0.6   0.5   0.5   0.3   0.3   0.25   0.25   0.6   0.6   0.6   0.6 

Within person 
variance 

 2.8   2.8   0.3   0.3   410   410   3.5   3.5   1166   1158   4.1   4.0 

Statistics of model fitb

Log–likelihood  ‐1512.1  ‐1512.5  ‐374.6 ‐375.8 ‐4331.2 ‐4333.6 ‐1780.7 ‐1784.6  ‐4746.5 ‐4748.1 ‐1688.7 ‐1691.0
AIC    3070.3   3059.0   795.3 785.5 8708.4 8699.1 3607.5  3601.2  9538.9 9532.3 3423.5 3418.0
BIC   3169.0   3132.0   894.0 858.5 8807.1 8767.8 3706.2  3669.9  9637.7 9609.5 3522.2 3495.3

FILM mammograms only: Annual change in MD  
63 episodes , 45 participants 

Baseline to Year 1  ‐1.8*  ‐1.8*  ‐0.2* ‐0.2* ‐313* ‐315* ‐2.2 ‐2.2  ‐‐‐1 2812 ‐‐‐2 1.53

DIGITAL mammograms only: Annual change in MD 
434 episodes, 120 participants 

Baseline to Year 1  ‐0.72  ‐0.72  ‐0.09* ‐0.10* ‐153* ‐149* ‐1.3* ‐1.5  136 139 0.47 0.49
Years 1 to 5   0.52**   0.52**   0.07** 0.07** 115** 119** 1.0**  1.1  123‡ 124‡ 0.39† 0.39‡
Years 5 to 7  ‐0.06  ‐0.06  ‐0.004 ‐0.005  7.2  8.0 0.18  0.17  281† 282† 0.97‡ 0.97†

Bold p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; ‡ p<0.15; † p<0.2;  
Parsimon. parsimonious model;  y yrs years; ref. reference category;  ‐‐ not applicable, p>0.1 parameter removed during stepwise selection  
a Coefficient values of square root transformed MD variables have not been back–transformed to original units, e.g. DA square root coefficients’ scale is in mm (not mm2). 
b The LL, AIC, BIC statistics of model fit were generated by models which utilise an average of the imputed value for menopause age 
1 BA full model would not converge; BA parsimonious model converged with BMI menarche only in the model – rho very small (0.000025) 
2 Square root transformed BA full model would not converge; Sqrt BA parsimonious model converged with removal of all covariates except BMI and baseline–Year 1 time.
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Table 7‐8 Coefficients for parsimonious untransformed and back transformed models of PD, DA, BA 

Covariate 
PD % 
(from 
Table 7‐7)

1
 

PD %
Back trans‐
formed sqrt 

DA mm2

(from  
Table 7‐7)

1

DA 
Back trans‐
formed sqrt 

BA mm2 

(from  
Table 7‐7)

1 

BA mm2

Back trans‐
formed sqrt

ALL MAMMOGRAMS
120 participants 540 episodes (follow ups) 

Age at Rand. (yrs)  ‐0.26  ‐0.41** ‐31 ‐48  ‐‐   ‐‐
BMI (kg/m2)  ‐0.82*** ‐1.23*** ‐‐ ‐‐  965***   814
Menarche (yrs)   ‐‐  ‐‐ ‐‐ ‐‐  500   476
Menopause (yrs)  0.36** 0.63** 75** 103**  ‐‐   ‐‐
Age First Birth <30y   ref.  ref. ref. ref.  ref.   ref.
 ≥ 30 years   8.3*  12.65** 2603** 3124***  4376*   3500
Non‐parous  ‐0.97  ‐0.52 492† 677  3252‡   2976

Smoking‐ never   ‐‐  ‐‐ ‐‐ ‐‐  ref.   ‐‐
Current   ‐‐  ‐‐ ‐‐ ‐‐  3769*   3237
Ex‐smoker   ‐‐  ‐‐ ‐‐ ‐‐ ‐862  ‐653

Mammogram 
Version‐ film 

 ref.  ref.   ref.   ref.   ref.  ref. 

 KE52  ‐6.6***  ‐7.33***  ‐1234***  ‐1100***  ‐63‡  ‐28† 
 KE54  ‐4.5*** ‐4.76*** ‐864*** ‐748***  36   57

    Fuji  ‐2.7*  ‐2.93 ‐648* ‐531* ‐269  ‐198
Intercept  27*** 27*** 3967*** 3600***  13996***  13924***

Annual change in MD (All mammograms)

Baseline to Year 1  ‐1.06** ‐1.34** ‐194** ‐189**  197  161
Years 1 to 5  0.37* 0.42 100*  98*  145  116
Years 5 to 7 ‐0.17  ‐0.21 ‐3.78 ‐6.0  311   258

FILM mammograms only: Annual change in MD
63 episodes , 45 participants 

Baseline to Year 1  ‐1.8*  ‐2.2* ‐315* ‐259* 281
2
  363

DIGITAL mammograms only: Annual change in MD 
434 episodes, 120 participants 

Baseline to Year 1  ‐0.72  ‐0.87* ‐149* ‐146  139  116

Years 1 to 5   0.52**   0.63**    119**   110   124‡  92‡ 
Years 5 to 7 ‐0.06  ‐0.04  8.0 17  282†  230†

The PD and DA back transformed values are representative of CMN IBIS‐II participants randomised at 
age 50, BMI 25 kg/m2, who underwent menopause at age 50, first gave birth under age 30. 
Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; ‡ p<0.15; † p<0.2; y yrs years; 
ref.  reference category;  ‐‐ not applicable (p>0.1 parameter removed during stepwise selection) 
1 The first column of the paired PD, DA and BA model coefficients presents the coefficient values from 
the untransformed parsimonious models tabulated in Table 7‐7; the second column of each pair 
presents back‐transformed values from the square root models for PD, DA and BA from Table 7‐7 
2 Sqrt BA model converged with removal of all covariates except BMI and baseline–Year 1 time. 

 

values ≤0.1 in the PD models (full and parsimonious); the latter three covariates were signif-

icant (p<0.05).  Age at menopause and age at first birth ≥ 30 years were significant (p<0.05) 

covariates for the DA models (full and parsimonious).  Current smoking status had a p-value 

≤0.1 in the DA full models only.  PD and DA were also significantly modified by the ‘technical’  

mammographic parameter mammogram Version in all models; the effect of Version on BA was 

less consistent (non-significant p-values).  BMI, age at first birth ≥30 years and current smoking 
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status were significantly associated with BA in all models, whilst age at menarche was retained 

in parsimonious models of BA because the p-value for this covariate was <0.1.   

All PD and DA models estimated a decrease in the rate of annual change for PD and DA 

between baseline to year 1, Table 7-7.  The PD and DA all mammograms models first year 

annual decline was significant (p<0.01), as was the first year rate of change for the PD film only 

and square root transformed PD digital only models (p<0.05). The film only and digital only 

first year decline in DA annual change  was only significant for untransformed DA; the film 

only and digital only DA parsimonious square root transformed model baseline to  year 1 rate of 

change was not significant (0.05< p ≤0.1). 

 

However, for years 1 to 5 for the all mammogram and digital only models a significant (p<0.05) 

increase in annual change for PD and DA is seen.  (Film mammograms were not taken during 

years 1 to 7, therefore coefficients for the film only models from year 1 onwards are not 

available.) A significant annual change in PD and DA is not estimated for years 5 to 7 for any 

model. The rate of annual change in BA is not significant (p≥0.05) for all models—for any time 

period, indicating the BA is relatively stable across time (and therefore across all mammogram 

Versions).   

 

Back-transformed parsimonious model coefficients are presented in Table 7-8.  The back 

transformed coefficient values for PD, DA and BA (second column for each pair of models for 

PD, DA and BA, Table 7-8) were calculated as per Equation 7-1 using the square of the 

intercept for each square root transformed MD model from Table 7-7.  Because the square of 

the intercept values for PD (27%) and DA (3600 mm2) are higher than median PD and DA for 

baseline mammograms in this data set (PD 18%, DA 2800mm2, Table 6-6 in Chapter 6), the 

back transformed coefficient values calculated for the square root transformed PD DA models 

are greater in magnitude (absolute value) than would be if the median PD and DA values for 

CMN IBIS-II participants were utilised as the reference (intercept) values.   
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Back transformed annual rates of change for PD and DA for a range of ‘intercept’ reference 

values are shown in Table 7-9, for the MD change over time coefficients of the square root 

transformed parsimonious models (Table 7-7) for all mammograms, film only, and digital only 

mammogram models of PD and DA. The absolute value (magnitude) for the rate of annual MD 

change increases as the value of the PD and DA reference value (‘intercept’) increases.  Because 

the 20% PD and 2700 mm2 DA reference values are closer to the median PD and DA values for 

CMN participants (PD 18%, DA 2800mm2, Table 6-6 in Chapter 6), the MD annual rates of 

change calculated for these reference values, Table 7-9, are likely more representative of the 

average annual MD change for the 120 CMN IBIS-II participants. 

 
Table 7‐9 Back transformed PD, DA coefficients calculated for a range of ‘intercept’ reference values 

Covariate 
Percent Density estimates Dense Area estimates 

15% PD  20% PD  25% PD 
2000 mm

2
 

(20cm
2
)  

2700 mm
2
 

(27cm
2
) 

3500 mm
2
 

(35cm
2
)

Intercept   15  20 25 2000   2700  3500

Annual change in MD

ALL MAMMOGRAMS
120 participants 540 episodes (follow ups) 

Baseline to Year 1  ‐1.01  ‐1.16 ‐1.28 ‐142 ‐164  ‐182
Years 1 to 5  0.29  0.34 0.40  71  85   101
Years 5 to 7 ‐0.18  ‐0.20 ‐0.20  3  5   11

FILM mammograms only
63 episodes , 45 participants 

Baseline to Year 1  ‐1.53  ‐1.77 ‐1.96 ‐194 ‐224  ‐251

DIGITAL mammograms only
434 episodes, 120 participants 

Baseline to Year 1  ‐0.79  ‐0.90 ‐0.99 ‐134 ‐154  ‐171
Years 1 to 5  0.52  0.61 0.70 98  115   136
Years 5 to 7 ‐0.06  ‐0.06 ‐0.05 13  18   25

The back transformed values are representative of CMN IBIS‐II participants randomised at age 50, BMI 
25 kg/m2, who underwent menopause at age 50, and first gave birth under age 30. 

 
 
Comparison of the univariable (‘simple’) mixed regression coefficients (not tabulated) to their 

full and parsimonious multivariable counterparts showed they were generally similar (±10%) 

for significant covariates (e.g. BMI, age at menopause).  However univariable non-significant 

covariates were often more than 10% different than their multivariable counterparts in the full 

models.  For PD models, age at randomisation showed evidence of confounding between 

univariable and multivariable models because the coefficients differed by more than one SE.  

However, all multivariable model coefficients including age at randomisation still fell within the 
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95% CI of their univariable model counterparts, therefore no substantial collinearity issues 

appeared to present in the parsimonious models. 

 

7.5.10  Post estimation plots for PD and DA parsimonious models    
 

Figure 7-11 plots the estimated fitted values (RE + FE) of the parsimonious untransformed PD 

(%) model growth curves (Table 7-7), overlaid on a scatter plot of the fitted values for the 

parsimonious model for untransformed PD (%).  Comparisons of the fitted scattered PD data in 

Figure 7-11 with the observed scattered PD data in Figure 7-4 demonstrates the close emulation 

of the observed PD values by the mixed model —even for the model of untransformed PD 

which does not meet all regression model assumptions (re: skewed residuals, Figure 6-5 in 

Chapter 6, and fitted values with a ‘floor’ upper row of Figure 7-12, below).  

  
Figure 7‐11 Fitted values for PD (%) with estimated growth curves for 0‐12, 12‐60 and 60‐84 months 

 

The fitted growth curves for all mammograms, and for each Type (film, digital) in Figure 7-11 

display a small decrease in PD for the period of 0 to 12 months (baseline to 1 year).   The 

growth curve subsequently rises slightly over the period from 12 to 60 months (years 1 to 5), 
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and then declines again slightly from 60 to 84 months (years 5 to 7).  

 

The model coefficients and SE as well as graphs of the linear predictions were compared for the 

MI vs non-MI PD models (data not shown) and few differences were found. The coefficients of 

the MI and non-MI models were all well within ±2 SE of each other.  A comparison of the MI 

vs non-MI linear (FE) predictions for parsimonious models of PD showed few visual  

differences, Figure 7-12, although approximately one-fifth of the values for age at menopause 

(116 episodes from 27 participants) have changed (slightly).  The MI graphs (left column Figure 

7-12) and the non-MI graphs (right column, Figure 7-12) appeared quite similar, for both 

untransformed PD (upper row) and square root transformed PD (bottom row).  The graphs for 

 

 
Figure 7‐12 MI and non‐MI linear predictions vs measured values for PD (%) and sqrt PD 
The plots for the multiply imputed models (left column) look very similar to their non‐MI counterparts in 
the right column. Untransformed PD (upper row) shows a floor at 0%, whilst square root transformed 
PD (sqrtPD, bottom row) is more symmetric.  The lines of equality reveal the models do not work as well 
for women with very high PD (outliers at 50 to 80% (upper graphs) and high values of transformed PD 
(values of 6 to 8 on the lower row graphs)). Predicted PD (x‐axis) appears to be higher than observed PD 
(y‐axis) for some women with observed square root transformed PD values of 0 to 2 (y‐axis, lower row) 
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transformed PD show better fit than the untransformed PD graphs because they do not show a 

‘floor’ effect.  Because the linear prediction plots for untransformed PD (Figure 7-12, upper 

row) and untransformed DA (graph not shown) both showed evidence of a floor effect, 

subsequent post estimation checks are primarily shown only for square root transformed models 

of PD and DA. 

 

The residuals of the linear (FE) prediction for the parsimonious square root transformed PD 

model are quite similar for the non-MI model (upper plot) vs MI model (lower plot), Figure 

7-13.  These plots are very similar to the square root transformed PD plots in the lowest row of 

Figure 7-12; the scatter plot in Figure 7-12 has effectively been rotated to create Figure 7-13.  

Because the MI and non-MI coefficient values were similar, and substantial differences were 

not detected for the MI vs non-MI predicted values the non-MI models were judged as adequate 

representations of the MI models.  Hence subsequent post-estimation plots were created using 

non-imputed data which utilised an average of the 25 MI imputed values for age at menopause 

for 27 participants with unknown age at menopause.  This allowed full access to the range of  

 

 
Figure 7‐13 Similar residual plots for non‐MI (upper) & MI (lower) linear predictions, transformed PD 
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post-estimation commands for mixed models in Stata, particularly for fitted values of the 

models (i.e. predictions for both the FE and RE parts of the mixed models). 

 

More so than histograms of the untransformed PD best linear unbiased predictions and residuals 

(not shown), the residuals BLUPs for each RE level of the (non-MI) parsimonious model of 

square root transformed PD model showed reasonably normal distributions, Figure 7-14.  They 

are approximately symmetric and normally distributed.  As noted in the figure caption, the large 

peak at 0 for the film mammogram RE constant (BLUP RE for id: mmgv7) is due to the binary 

indicator used to model the film mammogram RE slope.  A film RE is modelled only for 

episodes with film mammograms, else the value for the film RE is 0 (for digital episodes). 

 

 
Figure 7‐14 Square root transformed PD mixed model RE residuals 
BLUP Best Linear Unbiased Prediction; mmgv = mammogram Version (7=film, 60=Fuji) 
Between person RE residuals: upper left film; upper right Fuji; lower left RE constant; Within person RE 
residuals: lower right.  The large peak at 0 for the film residuals is due to few film mammograms in the 
dataset.  The other residuals are symmetric and approximately normally distributed.  The right‐tail of 
the residual plots is due to a few women with high PD (≥50%).   

 

Further normality assumptions of the square root transformed PD model BLUP and residual 

plots were examined graphically with a method recommended by the Singer and Willet text 
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[490], Figure 7-15.  The graphs in Figure 7-15 plot the same residual data shown in Figure 7-14, 

but as normal probability plots (left column) and as scatter plots of the standardised residuals vs 

participant id (right column).   Again, the normal probability plot for the film mammogram 

intercept residuals for the between person RE are enriched for values of 0 (due to few film 

mammograms in the dataset), otherwise no particular issues with non-normality of the data are 

noted.   

 
Figure 7‐15 Examining normality assumptions, all mammograms model of square root transformed PD 
The figure’s left column presents normal probability plots for the random‐effect residuals; the right 
column presents standardised residuals for each participant (by id).  The top pair and second row of 
plots depict the between–person Film and Fuji residuals respectively, the third row pair of plots depict 
the between–person RE constant. The bottom pair of graphs plots the within–person residuals.  As for 
the residual histograms, enrichment at 0 is seen for the Film mammogram residuals, with a less marked 
effect for the Fuji mammogram residuals.  The outliers at value of 4 in the right column are due to the 
participant with very high PD (~80%).  The residuals for all RE are otherwise normally distributed.   

 

The BLUPs and residuals plots for the mixed model of untransformed PD (%), Figure 7-16, are 

very similar to those for square root transformed PD, Figure 7-15.  However, square root 

transformation has constrained more of the standardised residuals to fall within the desirable 

limits of ± 2 to 3 (right column, Figure 7-15) and only a few of the standardised residuals have a 

value of 4 or more (outliers from participants with high PD).  The high PD of some participants 

has caused outliers of with values at approximately 6 on the standardised residual plots of 
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Figure 7‐16 Examining RE normality assumptions, all mammograms model of untransformed PD (%)   

 

untransformed PD (right column, Figure 7-16).  The diagnostic evidence from this chapter as 

well as the last chapter (Chapter 6, baseline MD analysis) supports use of square root 

transformed PD instead of untransformed PD in the mixed linear regression models.   

 

Graphs of the measured, linear (FE) prediction and fitted (FE + RE) model predictions for 

square root transformed PD were made from randomly selected participants for whom five or 

more mammographic episodes were present in the dataset: Figure 7-17, Figure 7-18 and Figure 

7-19.  Four participants each were selected from the following ranges of PD: low PD (<20%), 

mid-range PD (20 to 30%) and higher PD (>30%). In general, participants with lower PD have 

linear and fitted values which are closer to their measured (observed) values for PD (Figure 

7-17 and Figure 7-18) than for participants with higher PD (Figure 7-19).  The linear prediction 

for each participant (in blue) mirrors the growth curve of the measured values for PD (in red) 

for both low, mid-range and high PD participants.   

 

-1
0-5

0
51

0

B
et

w
e

en
-P

er
so

n
R

E
 F

ilm
 B

LU
P

s
-10 -5 0 5 10

Inverse Normal
-5

0
5

B
et

w
e

en
-P

er
so

n
R

E
 F

uj
i B

LU
P

s

-5 0 5
Inverse Normal

-2
002

04
06

0

B
et

w
e

en
-P

er
so

n
R

E
 id

 c
o

ns
ta

nt

-40 -20 0 20 40
Inverse Normal

-5
0

51
0

W
ith

in
-p

er
so

n
R

e
si

du
al

s

-5 0 5
Inverse Normal

-2
0

2
4

S
td

 R
E

 F
ilm

B
LU

P
s

0 500 1000 1500
id

-3-
2-1

01
2

S
td

 R
E

 F
uj

i
B

LU
P

s

0 500 1000 1500
id

-2
0

2
4

6

S
td

 R
E

 id
 c

o
ns

B
LU

P
s

0 500 1000 1500
id

-4-
20

24
6

S
td

. 
R

e
si

du
al

s
0 500 1000 1500

id

Untransformed PD, Between-person Best Linear Unbiased Predictors (BLUPs)
of RE at id: & Within person residuals

Normal probability & Standardised (Std) plots



Chapter 7 

272 

 
Figure 7‐17 Observed, linear and fitted predictions for low PD (<20%) participants 
Square root transformed PD fitted (FE+RE) predictions for participants (green) with linear prediction line 
(blue) and original measured PD (square root transformed) in red. 
 

 
Figure 7‐18 Observed, linear and fitted predictions for mid‐range PD (20 to 30%) participants 
Square root transformed PD fitted (FE+RE) predictions for participants (green) with linear prediction line 
(blue) and original measured PD (square root transformed) in red. 

 
 
 

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

Red=measured PD; Blue=linear & Green=fitted predictions

Measured, linear and fitted predictions of sqrtPD
for low (<20%) PD participants

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

0
2

4
6

8
10

S
qu

ar
e 

ro
ot

 tr
an

sf
or

m
ed

 P
D

0 1 2 3 4 5 6 7
Episode date in years

Red=measured PD; Blue=linear & Green=fitted predictions

Measured, linear and fitted predictions of sqrtPD
for mid-range (20 to 30%) PD participants



Chapter 7 

273 

 
Figure 7‐19 Observed, linear and fitted predictions for higher PD (>30%) participants 
Square root transformed PD fitted (FE+RE) predictions for participants (green) with linear prediction line 
(blue) and original measured PD (square root transformed) in red. 
 

 

The RE residuals of the parsimonious model for square root transformed DA also had 

approximately symmetric and normally-distributed residuals, Figure 7-20.  The few film 

mammograms in the dataset are again reflected in a large peak at 0 for the film mammogram RE 

residual (mmgv7). 

 

As for PD, further normality assumptions of the square root transformed DA model residual 

plots revealed few unexpected departures from normality, Figure 7-21. Histograms, normal 

probability plots, and standardised scatter plots for the BLUPs and residuals from the 

untransformed parsimonious model of DA (not shown) showed reasonably normal distributions.  

As for the square root transformation of PD, the diagnostic plots from the parsimonious model 

of square root transformed DA showed fewer outliers (e.g. fewer standardised residual values > 

3) than did the graphs for the model of untransformed DA.  Hence the mixed models of square 

root transformed PD and DA were both selected for use in the Primary Aim (Chapter 8, 

unblinded analysis of treated vs control IBIS-II participants), as well as for the subgroup, 

sensitivity and exploratory analysis for Aim 4 (this chapter, next section). 
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Figure 7‐20 Square root transformed DA mixed model RE residuals 
Between‐person RE residuals: upper left mmg Version (film); upper right mmg Version (Fuji); lower left 
RE constant; Lower right: Within–person RE residuals.  The large peak at 0 for the Film mmg residuals is 
due to few film mammograms in the dataset.  The other residuals are symmetric and approximately 
normally distributed.  The right‐tail of the residual plots is due to a few women with high PD (≥50%).   
 
 

 
Figure 7‐21 Examining normality assumptions, all mammograms model of square root transformed DA 
The left column of the figure presents normal probability plots for the transformed DA random‐effect 
residuals; the right column presents standardised residuals for each participant (by id).  The top pair and 
second row of plots depict the between–person film and Fuji RE residuals respectively, the third row 
pair of plots depict the between–person RE constant. The bottom pair of graphs plots the within–person 
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residuals.  As for the residual histograms, enrichment at 0 is seen for the Film mammogram residuals, 
with a less marked effect for the Fuji mammogram residuals.  The outliers at value of 4 in the right 
column are due to the participant with very high PD (~80%).  The residuals for all RE are otherwise 
normally distributed.   

 
 

7.5.11 Subgroup, sensitivity and exploratory analyses    
 
No unusual coefficient changes were noted for models with and without participants with high 

PD (≥50%), a participant with unusually long duration of HRT compared to others in the dataset 

(30 years), and a participant with an unusually long duration of oral contraceptives (>40 years). 

The PD model fitted with 93 participants (424 episodes) for whom age at menopause was 

known did not differ substantially from the multiply imputed model with all 120 participants 

and 540 episodes. The coefficient for age at menopause was 0.0746 (SE 0.0178, p<0.001) for 

the subgroup of 93 participants with known age at menopause compared to 0.0557 (SE 0.0193, 

p=0.004) for the multiply imputed model with all 120 participants including 27 participants for 

whom age at natural menopause was imputed. Only one other coefficient differed by >1 SE 

between these models: first year PD change was –0.10 (p=0.018, SE 0.04) for the subgroup of 

93 participants compared to –0.13 (p=0.002, SE 0.04) for the imputed model with all 120 

participants.  

 

Substitution of the MI covariate for age at menopause with the ‘as reported’ age at  menopause 

or hysterectomy from the IBIS-II database yielded (non-MI) PD model coefficients similar to 

the MI model; the coefficient for (rounded) first year annual change in the ‘as reported’ age at 

menopause or hysterectomy model was identical (–0.13, SE 0.04, p=0.002) to that of the MI 

model, although the coefficient for age at menopause differed slightly (0.05, SE0.02, p=0.004).  

The (rounded) coefficients, SE and p-values were also identical for PD annual change for years 

1 to 5 and years 5 to 7. The most marked difference was found in the RE variance estimates, 

which were lower in the ‘as reported’ age at menopause or hysterectomy model for film and 

Fuji mammograms (0.3 and 0.1, respectively, compared to 0.5 and 0.4 respectively in the MI 

model) whilst the estimate for the between person variance intercept was slightly higher (1.3, vs 
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1.1 in the MI model). Estimated within person variance was also lower in the ‘as reported’ age 

at menopause or hysterectomy model (0.09, vs 0.3 in the MI model).  Rounded RE variance 

estimates for the non-MI model (with an average age at menopause for the 27 participants) were 

identical to the RE estimates of the ‘as reported’ age at menopause or hysterectomy model.  

Comparison of the three different parameterizations for age at hysterectomy (MI, non-MI, and 

‘as reported’ age at menopause or hysterectomy) imply that (not surprisingly) the MI introduced 

extra variability into the model, as reflected in the higher within person and film and Fuji  RE 

variance estimates.  Some of the between person variability in the non-MI and ‘as reported’ 

models has likely been shifted to the RE within person portion of the model as a result of the MI 

performed for some participants.   

 
Differences in randomisation age under 60 vs over 60 years of age were associated with 

differences in change in PD during the first year of trial treatment, Table 7-10.  A greater PD 

change in the first year of treatment was associated with younger women (≤60 years at 

randomisation) for all, film-only and digital-only mammograms. The p-values for these rates of 

first year change in PD were all <0.1.  The baseline to year 1 PD decrease for film only 

mammograms was larger than that for all digital mammograms, however the KE52 only decline 

was slightly larger than that for film only.   

 
Table 7‐10 PD change from randomisation to year 1, by age at Randomisation (≤60 vs >60 years) 

  All mmgs  Film only2 Digital only KE52 only1 KE54 only1 

Baseline to Year 1  ≤ 60 years at Age at Randomisation

PD change  –0.20**  –0.29%** –0.18%* –0.31*** 0.015 
Number of participants  39  18 27 15 9 
Number of episodes  63  28 35 21 11 

Baseline to Year 1  > 60 years at Age at Randomisation

PD change, 0 to 1yr  –0.05%   0.12% –0.02% 0.01 –0.03 
Number of participants  60  27 48 22 20 
Number of episodes  83  31 52 25 21 

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2; mmgs mammograms; 
1 Film, KE52 and KE54 only models fitted with default covariance structure (independent) due to small 
sub‐group sample sizes to enable model to converge 
 
 

A dose-response effect of age was also noted for models with all mammograms with age at 

randomisation divisions at ≤55 years vs <55 years, ≤60 years vs  >60 years, ≤62 years vs  >62 
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years and ≤65 years vs > 65 years, Table 7-11.  Younger age at randomisation appears to be 

associated with a more substantial rate of decline for annual PD from baseline to year 1, relative 

to older age at randomisation.  Most models include only a few repeated measurements for each 

subset of mammograms from baseline to year 1 (Table 7-11), hence these age-related dose-

response results are based on very small sample sizes.   

 
Table 7‐11 PD change from randomisation to year 1, by ages 55, 60, 62 and 65 at randomisation  

Age, ≤ or > comparison  Age 55 Age 60 Age 62  Age 65

Baseline to Year 1  Younger participants 

PD change
1
  –0.24** –0.20** –0.19***  –0.16%***

Number of participants2  19 39 53  72
Number of episodes2  31 63 83  110

Baseline to Year 1  Older participants

PD change1  –0.09% –0.05% –0.02  0.05%
Number of participants2  80 60 46  27
Number of episodes2  115 83 63  36

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2 
1 Coefficient for baseline to year 1 time segment 
2 Number of participants and episodes for baseline to Year 1 
 

 
Selected model coefficients—for the parameters age at randomisation, MD change over time, 

the age and time interactions, and the intercept— are presented in Table 7-12 for parsimonious 

models of PD and DA which were fitted with an interaction between age and time.  The age and 

baseline to year 1 interaction was significant for both PD (p=0.032) and DA (p=0.048), as well 

as for years 5 to 7 (PD, p=0.016; DA, p=0.018).  The age and baseline to year 1 interaction 

coefficient for PD, for instance, is interpreted as a significant increase in (square root 

transformed) PD of 0.014 per year increase in age at randomisation.  For a participant age 50 

years of age at randomisation, the average annual baseline to year 1 decline in PD is –0.26/year; 

in comparison, a participant randomised at age 60 has a relative baseline to year 1 decline in  

average annual PD which is (10 years * 0.014/year =) 0.14 higher, which equates to –0.12/year. 

The significant interactions between age and time for PD and DA during baseline to year 1 and 

years 5 to 7 also suggest, as per the data in Table 7-10 and Table 7-11 that the rate at which PD 

and DA decline decreases as age increases. 
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Table 7‐12 Selected model coefficients, PD, DA continuous Age at Randomisation interaction models 

  Continuous age at randomisation interaction models 

Covariate 
Percent Density1 Dense Area1

Coefficient SE Coefficient SE 

Age at randomisation (y)  ‐0.056** 0.016 ‐0.53* 0.26 

Baseline to Year 1  ‐0.256** 0.078 ‐3.1** 1.0 
Year 1 to Year 5   0.033  0.033 0.81 0.45 
Year 5 to Year 7  ‐0.195* 0.085 ‐2.8* 1.2 

Baseline to Year 1 x interaction   0.014* 0.0064 0.16* 0.08 
Year 1 to Year 5 x interaction   0.001  0.0022 0.0008 0.03 
Year 5 to Year 7 x interaction   0.020* 0.0083 0.33* 0.14 

Intercept   5.4*** 0.25 61.6*** 3.6 

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2 
1 Square root transformed PD and DA, modelled with all 540 episodes and continuous time (3 segments) 
 

 

A dose-response effect with increasing PD for the initial (first) episode at either baseline (n=85) 

or the earliest episode (n=35) was noted, Table 7-13; the rate at which square root transformed 

PD declines increases (in absolute value) with higher initial PD (baseline or earliest episode).  

As for most other sub-group models, the estimated annual PD decline from baseline to year 1 is 

derived from data with only a few repeated measurements from baseline to year 1 for any 

participants.  However, the observed dose-response effect of higher PD associated with greater 

PD change over time is expected, and may potentially be replicated within larger samples of the 

IBIS-II population.   

 
Table 7‐13 PD1 change from randomisation to year 1, by first episode PD <10%, 10 to <25%, & ≥25% 

PD (%) for first episode 
(baseline or earliest episode)  

<10%  10 to <25%  ≥25% 

Baseline to Year 1 only   

PD rate of change2  –0.11 –0.124 –0.24** 
Number of participants3  31 42 26 
Number of episodes3  45 63 38 

Baseline to Year 7  

Number of participants  37 54 29 
Number of episodes  150 246 144 

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2 
1 Square root transformed PD; 
2 coefficient for baseline to year 1 time segment;  
3 Number of participants and episodes for baseline to Year 1 only  
4 p=0.053 

 
 
The numbers of participants were too small to properly assess the age x time interaction within 

each PD stratum (<10%, 10 to <25%, & ≥25%), Table 7-14, however the PD stratum with the 
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most participants and episodes, PD 10% to <25%, showed a marginally non-significant (at the 

5% level) baseline to year 1 interaction between age and time (p=0.05), Table 7-15.  

 
 
Table 7‐14 Number of participants per PD <10%, 10 to <25%, & ≥25%, by age at randomisation  

Age at randomisation  <10% 10 to <25% ≥25% Total 

<55 years  4 14 4 22 
 55 to 59 years  10 9 6 25 
60 to 64 years  11 16 12 39 
65 + years  12 15 7 34 

Total  37 54 29 120 

 
 
 
Table 7‐15 PD1 change and age x time interaction, by first episode PD <10%, 10 to <25%, & ≥25% 

PD (%) for first episode 
(baseline or earliest episode)  

<10%  10 to <25%  ≥25% 

# participants/# episodes  37/150 54/246 29/144

Age at randomisation (years) ‐0.02 0.02 ‐0.004

Baseline to Year 1  ‐0.23† ‐0.25  ‐0.24†
Year 1 to Year 5  ‐0.07 0.04 ‐0.06
Year 5 to Year 7  ‐0.21 ‐0.31 ‐0.13

Baseline to Year 1 x interaction 0.01 0.023  0.0009
Year 1 to Year 5 x interaction  0.004  ‐0.0004   0.007†
Year 5 to Year 7 x interaction  0.04* 0.02 0.009

Intercept     2.5***     4.8***      6.1***

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2 
1 Square root transformed PD 
2 Coefficient for baseline to year 1 time segment 
3 p=0.05 

 
 
Although sample sizes within any of the strata for mammogram Version are also small (Table 

7-16), longitudinal PD change modelled for each mammogram Version separately (Table 7-17) 

demonstrated significant decreases (p<0.05) in square root transformed PD for the first year of 

trial treatment for film and KE52 Version mammograms.  The PD rate of annual change for 

years 1 to 5 was not significant for KE52 and Fuji Version mammograms.  In contrast, PD 

annual change for KE54 mammograms increased non-significantly for the first year of trial 

treatment (0.05/year), whilst the PD annual change from years 1 to 5 for KE54 was a significant 

0.20/year (p<0.001).  Most of the unusual changes in PD over time for models of digital 

mammograms (e.g. reduced rated of PD change for baseline to year 1, and increase in annual 

PD for years 1 to 5) appeared to have resulted from measurements made on KE54 

mammograms.  Interestingly, PD decreased non-significantly for KE54 mammograms for years 
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5 to 7 at an annual rate of –0.3/year, whilst PD did not change significantly (0.05/year) for Fuji 

mammograms during this time period.  

 
Table 7‐16 Distinct number of participants, total episodes per time segment, by mammogram Version 

Mammogram 
Version 

0 to 1.0 year  >1.0 to 5.0 years  >5.0 to 7.0 years 

  Distinct number of participants/Total episodes1 

Film only  45/59  4/4 none 
KE52 only  37/46  66/77 none 
KE54 only  29/32  90/115 4/4 
Fuji only  5/5  90/135 42/59 

4 episodes from mammograms of ‘other’ digital Version not tabulated 
1 Due to differences between the date in years and categorical time (follow up number), total number of 
follow ups for baseline to year 1.0, >1.0 to 5.0 years and >5.0 years (Table 7‐16, above) does not exactly 
match the number of episodes per follow up in Table 10‐7 (Number of episodes (participants) at each 
follow up, by mammogram Version) 

 

Table 7‐17 Square root transformed PD annual change coefficients (%), by mammogram Version 

Mammogram 
Version 

N 
participants
/episodes 

0 to 1 
year 

1 to 5 
years 

5 to 7 
years 

Intercept 
(FE) *** 

Between 
person 
variance 

Within 
person  
variance 

Film only1  45/63  ‐0.20* ‐‐3 ‐‐3 5.6 2.2 0.05 
Film only, 
default covariance 

“  ‐0.20*  ‐‐3  ‐‐3  5.6  2.2  0.05 

KE52 only1  94/123  ‐0.15* ‐0.04 ‐‐ 4.5 ‐‐4 ‐‐4 
KE52 only, 
default covariance 

“  ‐0.14*   ‐0.05  ‐‐3  4.5  1.3  0.03 

KE54 only
1
  114/151  0.05    0.20*** ‐0.30 4.3 1.2 0.08 

KE54 only, 
default covariance 

“  0.05      0.20*** ‐0.30  4.3  1.3  0.02 

Fuji only, 
default covariance2 

113/199  ‐‐3  0.01   0.05  4.7  1.5  0.05 

KE52 + Fuji only1  117/322  ‐0.13* 0.03 0.002 4.4 1.3 0.05 
KE54 + Fuji only1  119/350  ‐0.09*   0.10*** 0.02 4.6 1.2 0.06 
KE52 + KE54 + Fuji1,5  119/473  ‐0.09*   0.07*** ‐0.004 4.8 1.2 0.10 

Bold indicates p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; † p<0.2 
1 Exponential covariance structure modelled; 
2 Default covariance structure modelled only for Fuji due to non‐convergence of exponential model;  
3 Insufficient mammograms were available during these time segments (re: Table 7‐16) hence growth 
parameters are: not tabulated or not applicable 
4 RE intercept variance estimates for model were not significant (i.e. 2*SE> RE variance estimate) 
5 Four episodes of unknown Version are not modelled 

 

The mixed model weights participants with higher numbers of measurements more heavily than 

participants contributing fewer episodes. For example, the totals for number of distinct 

participants for the time segment from baseline to year 1 for film, KE52, and KE54 

mammograms were 45, 37 and 39 respectively, Table 7-16.  The total episodes during the same 

time segment for film KE52 and KE54 mammograms were 59, 46 and 31 respectively (Table 
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7-16).  The maximum number of participants with repeated measurements in each time segment 

is the difference between the number of total episodes and number of distinct participants for 

that time segment.  Therefore the maximum number of participants contributing repeated (more 

than one) measurements for the baseline to year 1 time segment for film, KE52 and KE54 

mammograms are 14, 9 and 3 participants, respectively.  This means that very few participants 

contributed multiple episodes to the baseline to year one PD relationships tabulated in Table 

7-17.  

 

Fitting of a paired Version model with both KE52 and Fuji mammograms (controlled for 

mammogram Version) yielded a combined annual PD change for years 1 to 5 of 0.025/year, 

p=0.37 (Table 7-17).  In comparison, another paired Version model fitted with KE54 and Fuji 

mammograms (controlled for mammogram Version) yielded a combined annual PD change for 

years 1 to 5 of 0.1, p<0.001 (Table 7-17). This PD change over time coefficient for years 1 to 5 

is approximately halfway between the individual Version coefficient values of 0.2 for KE54 and 

0.01 for Fuji mammograms.  It is not surprising that the coefficient for the combined Version 

model is halfway between the individual Version estimates because the number of distinct 

participants and total mammograms are similar for years 1 to 5 for KE54 and Fuji mammo-

grams, Table 7-16. The results from these two paired Version models further supports an 

assertion that the significant increase in PD for years 1 to 5 noted in the digital-mammogram 

only parsimonious square root transformed PD model, Table 7-7, is likely due to change in PD 

on KE54 mammograms only.  PD change over time for the KE52 and Fuji mammograms for 

years 1 to 5 is effectively flat (no change). The growth curve for the KE54 mammograms for the 

baseline to year 1 period also differs from that of the film and KE52 mammograms (Table 

7-17).  Whilst these differences in PD growth between the different mammogram Versions 

might be just to chance (e.g. small sample sizes/repeated measurements re: Table 7-16), errors 

in measurement or other reasons, potentially other technical factors could be affecting the 

appearance of the KE54 mammograms compared to other Versions which were not controlled 

for during the analysis.   
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To further examine the noted longitudinal PD differences for KE54 mammograms compared to 

other Versions, participants for whom sequential mammograms were available for the KE54 

mammogram Version were reviewed within the Sante DICOM Editor viewer.  One participant 

visibly decreased in PD from baseline to year 1.  Although some of the increases in PD during 

the 1 to 5 year time period were likely due to (random) measurement error (because no other 

reason was found), a few participants visibly increased in PD.  The reasons for this are 

unknown, and did not appear to be explained by changes in mammogram exposure compared to 

other participants or trends in the data (e.g. cease of randomised treatment, symptoms such as 

hot flushes or arthralgia).  An increased sample from participants with KE54 mammograms may 

help to clarify if the observed significant increase over time during year 1 to 5 is genuine.   

 
 

7.6 Discussion    
 

Overall, the aggregate (treated + control) models for PD and DA appeared to provide a 

reasonable fit for the observed mammographic data, although the power to detect a difference in 

MD change over time is low due to the small sample size including repeated measurements 

within any of the different mammographic Versions.  Contrary to early expectations, both PD 

and DA showed significant (p<0.05) average increases over the 12 to 60 month (years 1 to 5) 

follow up period, which are likely due to the transition from lower PD digital mammograms 

(KE52) to higher PD digital mammograms (Fuji).  Untransformed PD showed an average 

increase of 0.4% per year (+1.6% total during years 1 to 5) and untransformed DA showed an 

average increase of 100mm2/year (about 400mm2 or 4cm2 total during years 1 to 5).  Very small 

(–0.2% for PD and –4mm2 for DA) non-significant decreases in the aggregate growth curve 

coefficients for PD and DA were noted after the cease of trial treatment at 5 year post-

randomisation.   

 

The modelled small effects on longitudinal PD and DA for baseline to year 1 noted for the 

aggregate (treated + control groups) in Aim 4 (this chapter, Table 7-7) could potentially be 
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composed of the predicted MD reduction due to anastrozole during the first 12 months of 

treatment and a smaller longitudinal MD change for the control group.  

 

The models of square root transformed PD and DA appeared to better meet the assumptions of 

normally distributed residuals than did untransformed models of PD and DA.  Square root 

transformation is a popular technique used during modelling of longitudinal modelling of MD to 

improve normality assumptions [148, 184, 188, 191, 401, 487, 495].  Although additional 

calculations are required in order to back-transform square root transformed data (with the 

attendant possibility that error will be introduced whilst doing so), the improvement in the linear 

prediction (‘xb’) plots (Figure 7-12) offset the appeal of using native units of measurement for 

PD and DA for the Primary Aim.  The other diagnostic post estimation plots implied that the 

square root transformed PD and DA models met the assumptions of residual symmetry for all 

RE levels better than models with untransformed PD and DA, and that the predicted values 

provided good estimates of the observed (measured) values for PD and DA.   

 

The magnitude and sign of the covariates in the baseline characteristics multivariable regression 

models of PD, DA and BA (Chapter 6, Table 6-11— 85 participants, 85 episodes) were 

generally similar to those in the multivariable models of aggregate longitudinal MD, Table 7-7 

(120 participants, 540 episodes).  Age at randomisation was significantly (p<0.05) and inversely 

associated with square root transformed PD in baseline (Chapter 6) and aggregate longitudinal 

models (this chapter), as expected [137].  BMI was also significantly (p<0.001) and negatively 

associated with PD in all baseline and longitudinal models, as expected [178]. The associations 

between these important BC risk and MD confounders for this sample of CMN IBIS-II 

participants therefore appear to be consistent with other populations [189, 192].   

 

The inverse association with age was not significant (p<0.05) for any DA model (untransformed 

or transformed, baseline or longitudinal), however the p-value was 0.09 for the parsimonious 

longitudinal model of square root DA.  Models with larger numbers of IBIS-II participants and 
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episodes would likely show a significant inverse association between DA and age at 

randomisation as seen in another high risk population [192]. BMI was not significantly 

associated with DA, which was not surprising as use of DA has been suggested as an alternative 

to PD, especially when BMI is not available— as often occurs for mammographic data collected 

from BC screening programs.  However, other reports have found associations between BMI 

and DA (although less strongly than with PD) [189, 192].   

 

Age at first birth (≥30 years vs <30 years) and age at menopause were not significantly 

associated with PD in baseline models (Aim 3, Chapter 6), however both parameters had a 

positive and significant (p<0.01) association with square root transformed PD in the aggregate 

longitudinal models (this chapter).  Since the coefficients for age at first birth and age at 

menopause in baseline and longitudinal models are of similar size (~1 and ~0.6, respectively), 

the lack of significance in the baseline models is likely due to the smaller sample size of 

participants and mammograms used in the baseline models. Age at first birth ≥30 years relative 

to age at first birth <30 years was significantly and positively associated with (untransformed 

and square root transformed) baseline and longitudinal DA and BA; similar trends in other 

reports have been noted for PD and DA [189] and for BA [188].   

 

Current smoking status was only significantly associated with MD in parsimonious models of 

BA (untransformed and square root transformed ); current smoking status was not significantly 

associated with PD and DA.  This is similar to another report [188] for both PD and DA in the 

(high risk) IBIS-I population, and for DA but not PD in another IBIS-I study [192]. The 

association with significantly lower PD for current and previous smokers for IBIS-I participants 

appears to be due to (non-significantly) lower DA but (non-significantly) higher BA.  BA was 

positively associated with current smoking status in the sampled IBIS-II population: a 

~4000mm2 (40cm2) increase compared to never smokers; however there is no biological 

rationale for this. BA was also associated strongly with BMI (as per other reports of BA and/or 

AA [188, 192, 296]), which is expected. Age at menarche was also positively but weakly (0.05 
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<p ≤ 0.1) associated with BA in parsimonious models. As for smoking status, there is no 

biological rationale for this so the association may be just due to chance. 

 

BMI, age, risk of BC and smoking status were also associated with longitudinal PD for IBIS-I 

participants [192] as well as for a general screening population (normal-risk population) [189].   

 

One important unknown covariate, number of children, is associated both with cross-sectional 

PD and DA, and longitudinal change in PD [145, 188, 189].  Inclusion of this covariate if it had 

been available may have improved the baseline and longitudinal MD models.  

 

The unconditional means model ICCs in Table 7-4 for PD and DA range from 0.89 to 0.90, 

hence the correlation between follow ups for each participant is high, and only a small 

proportion of the variability of the density measurements is due to within person differences in 

MD.  This likely implies that the change in MD over time is small per person compared to the 

between person differences in MD, which is in keeping with the small longitudinal MD changes 

noted for the full and parsimonious aggregate models (Table 7-7).  The ICC for BA is high 

(0.98).  Taken in conjunction with the non-significant outcomes for the Wilcoxon rank sum test 

(film vs digital mammograms) and Kruskal-Wallis test (digital mammogram Version 

comparison) for BA, Table 7-3, the high ICC for BA is likely due to relative stability of the 

measured breast area for each participant over time (despite the longitudinal variations in 

mammogram Version).  

 
 

The relatively strong (for an AI) unconditional growth model change of ~ –2 to –3% between 

baseline and up to year 3 for PD was a pleasant surprise.  However, this unconditional result 

was likely in part due to the transition from film (highest average PD mammogram Version) at 

baseline to KE 52 mammograms (lowest average PD mammogram Version) at the first year 

visit for half the participants. This likely created an artificial drop in PD for the film to KE52 

transition, because mammogram Version was not accounted for in the unconditional growth 
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model.  This trend is in competition with participants whose mammograms transitioned from 

KE52 to KE54 and from KE54 to Fuji mammograms, who should show an increase in PD.  

Similarly, the statistically significant increase in PD and DA continuous linear change over time 

from baseline for the unconditional growth models reflects the tendency of PD to increase over 

time for the digital mammograms.  Hence the results from the unconditional model needed to be 

treated with caution.  Mammogram Version needed to be taken into account.   

 

The unconditional growth models revealed a significant negative covariance (correlation) for 

PD and DA; this indicated women with higher initial PD and DA had a greater decrease over 

time than women with lower initial PD.  This is not unexpected, and may be related to age of 

the participant [189].  However, the negative correlation seen between higher initial PD and 

slope may also be partly attributable to the film to KE52 transition. Separate parsimonious PD 

models for participants ≤ 60 years (n=47 participants) vs >60 years of age at randomisation 

(n=73 participants) were fitted—adjusted for mammogram Version and the other significant 

parsimonious model parameters age at randomisation, BMI, age at menopause and parous age, 

Table 7-10; these models yielded square root transformed PD first year growth coefficients of   

–0.20 vs –0.05 respectively.  Further restriction of the models to film-only mammograms 

yielded PD first year growth coefficients of –0.29 for ≤ 60 years vs 0.12 for >60 years. A 

similar trend was also noted for most digital-only models (Table 7-10), and for different 

dichotomisations for age at randomisation, Table 7-11.  The coefficient for the interaction 

between PD change over time and age at randomisation modelled as a continuous parameter 

was also significant for baseline to year 1 (p=0.032, 0.01 square root PD/year increase in age, 

Table 7-12).  This implies that age of the participant may also be related to the rate of change in 

PD during the first year of trial treatment, independent of the film to digital transition.  

 

Even after the addition of time to the model, the within person RE estimates for the 

unconditional growth model MD parameters were significant (Table 7-5), hence a large 

proportion of the within- person variation was still unexplained.  This implied further time-
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varying parameters could be added to the model to explain this variability. One potentially 

important parameter which may vary over time is BMI; longitudinal BMI was not recorded for 

the IBIS-II participants hence (baseline) BMI is only utilised once in the model.  Time 

(modelled in years, as a three segment linear continuous spline) was the principal parameter 

which varied over time utilised in the Aim 4 longitudinal aggregate (treated + control) MD 

models.  However, the mammogram Versions also changed over time and its addition as both a 

FE and RE to the model reduced estimates of the (residual) within person variability.   

 

It was not possible to distinguish differences in MD— nor potentially, differences in MD 

change over time— for participants with higher BC risk (i.e. women with a stronger family 

history of BC and ovarian cancer) from the participants at lower risk (i.e. fewer number of 

relatives with BC and/or ovarian cancer) within this small sample of high risk women; this was 

due to the non-linearity of the relationship noted during the baseline characteristics analysis in 

Aim 3 (last chapter). The inability to utilise this parameter, as well as related factors such as 

Gail or Tyrer-Cuzick BC risk, is another limitation for the longitudinal models in this analysis.  

Incorporation of family history (or other metric of BC risk beyond the included parameters of 

BMI, age, parous status and menopausal status) may have improved the model. 

 

The statistics for model fit—log likelihood (LL), AIC and BIC— were smaller (closer to 0) for 

the unconditional growth model vs the unconditional means model.  The differences between 

statistics for the models ranged from ~40 to 70.  This is far greater than the BIC 10 unit 

difference which denotes very strong evidence for the model with the lower number [493]6 

[478].  Similarly, use of the Deviance statistic (-2LL for a multilevel model) shows that –78 

difference for the unconditional growth model greatly exceeded the 0.001 critical value of a 

                                                            
6 The BIC cutoffs for model selection of 0‐2, 2‐6, 6‐10 and >10 [weak, positive, strong and very strong 
evidence, respectively] are for models with independent observations.  This is not the case for mixed 
longitudinal models [Jones 2011]. Singer and Willett [2003] recommend use of ‐2(log likelihood), the 
Deviance statistic for a multilevel model, rather than the AIC or BIC when assessing model fit.   
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chi–squared test with 3 degrees of freedom7 (16.27) [490]. The results of these tests underscored 

the improvement in fit by the addition of time to the model. 

 

The removal or addition of one covariate in the models sometimes yielded differences in AIC 

greater than 2, but would change the BIC by less than 3.  To create more parsimonious models, 

selection of covariates based on the BIC outcome was undertaken. Selection of covariates based 

on differences in AIC may have resulted in the retention of more covariates, and provided 

models which are more generalisable to other high-risk populations and with more predictive 

capability. 

 

Unlike the film and Fuji mammogram Version random slopes, the RE slopes for KE52 and 

KE54 mammograms are likely not significant because the mean structure for the model (i.e. the 

FE part of the model) is similar to the lower PD and DA means of the KE52 and KE54 Version 

mammograms.  The RE for film and Fuji mammograms improve the model because PD and DA 

tend to be higher for film and Fuji mammograms, and thus deviate more from the mean 

structure (population average) than do KE52 and KE54 mammograms.   

 

The change in DA from baseline to year 1 post-randomisation also was largely driven by the 

DA decrease in film mammograms compared to digital mammograms (Table 7-7).  Dense area 

like PD also increased from years 1 to 5 post-randomisation. The slight increase in BA for all 

time periods between baseline and year 7 could be due to changes in mammogram Version over 

time, or possibly an increase in the compressibility of the breast tissue with increasing age.  It is 

unlikely to be due to a systematic increase in breast compression pressure applied during 

mammography, which should vary randomly across episodes. 

The apparent decreases in PD (–1%) and DA (–190mm2) from baseline to year 1 were in 

opposition to the annual increase in BA of ~190mm2 during this time, Table 7-7. These may be 

                                                            
7 Three degrees of freedom for the chi–squared test are needed because three additional parameters 
(one fixed effect and two random effects— a random slope, and a covariance) were added to the model. 
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genuine trends, as two of the three mammogram Versions showed decreases in PD and DA 

during this time period, Table 7-17. 

 

The reasons for the lack of the expected decrease in PD during baseline to year 1 as well as 

years 1 to 5 for KE54 mammograms compared to film, KE52 and Fuji mammograms are 

unknown.  The difference in response did not appear to be explained by changes in 

mammogram exposure compared to other participants or trends in the data (e.g. cease of 

randomised treatment, symptoms such as hot flushes or arthralgia).   

 

Other AI and MD studies have shown changes >3% PD for some participants after AI treatment 

[28, 31, 311].  It is not known if increase in MD due to AI treatment might potentially be asso-

ciated with increases, decreases or no change in BC risk.  The WHI trial of progestins + estro-

gen HRT observed both significant increases in BC risk and MD [246, 496].  A nearly signif-

icant trend towards lower BC incidence for women (without uteri) randomised to estrogen-only 

HRT was observed in an WHI trial [497]; average PD also tended to increase for the WHI 

participants treated with estrogen-only HRT [272].  Prior to the use of estrogen-reducing endo-

crine therapy for early and metastatic BC, progression of metastatic BC was slowed by high-

dose estrogen therapy.  Presumably MD increased for the women treated with estrogen therapy, 

as observed for women treated with HRT.  Further research is required to ascertain if MD 

increases and/or decreases in response to AI treatment are associated with change in BC risk.   

 

The numbers of participants were too small to assess the age x time interaction within each PD 

stratum (<10%, 10 to <25%, & ≥25%), however the PD stratum with the most participants and 

episodes, PD 10% to <25%, showed a marginally significant baseline to year 1 interaction 

between age and time (p=0.05). Because these models are the aggregate of the treated and 

control participants, if a treatment effect is present this will also affect all aggregate models 

fitted with the age x time interaction terms.  It is not known whether the rate of change due to 

AI treatment is also associated with age, but given the slower rate of decline in PD with 
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increasing age it is likely that if a rate of decline relative to controls is associated with 

anastrozole treatment in the CMN IBIS-II population, the rate of change is likely to inversely 

associated with age (i.e. younger anastrozole treated participants will have greater rates of 

decline than older anastrozole treated participants).  

 

The sensitivity analysis in this chapter for the comparison of the MI model with imputed age at 

menopause and a model with an ‘as reported’ age at menopause or hysterectomy was performed 

after the Primary analysis (Chapter 8) was completed.  During this sensitivity analysis 

comparison it was noted that the rate of change in PD for the different segments of time from 

baseline to year 7 do not differ for the MI and ‘as reported’ age at hysterectomy models.  

Although models for the Primary Aim (Chapter 8, unblinded analysis of treated vs control 

participants) included imputations for age at menopause, it is possible that the outcomes for the 

Primary Aim noted in Chapter 8 would be unchanged if the ‘as reported’ age at menopause or 

hysterectomy was utilised as a covariate instead of the imputed age at menopause covariate.  

Comparisons of the MI and non-MI models (including the ‘as reported’ model) for within and 

between person variability also revealed that use of the MI age at menopause covariate 

introduced additional within person and between person variability to the model. This further 

supports the idea that the parsimonious models tabulated in Table 7-7 could have been further 

simplified by substitution of the ‘as reported’ age at menopause or hysterectomy for the MI age 

at menopause covariate.   

 

7.7 Conclusion 
 

Parsimonious mixed models of square root transformed PD and DA provided adequate 

longitudinal growth curve modelling of the observed (measured) MD for CMN IBIS-II 

participants.  The estimated mean aggregate (treated + control) annual change from baseline to 

year 1 for PD (%) was –1% and –200 mm2 (0.2cm2) for DA.  These MD changes are quite 

small, and unlikely to be detected visually; however more sensitive and (probably) accurate 
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techniques to measure MD such as Hologic’s Qantra and Matakina’s Volpara may be able to 

reliably measure such small changes in MD.  Examination of the PD parsimonious models’ 

growth coefficients for each mammogram Version (film, KE52, KE54 and Fuji) implied that the 

decrease in PD noted between baseline and year 1 were not due (solely) to the film to digital 

transition.   

 

The addition of terms for treatment group (Chapter 8, Primary Aim) was expected to clarify if 

longitudinal MD differences existed for treated vs control participants in this sample of IBIS-II 

participants, despite some of the unusual (i.e. increasing PD) results found during 

characterisation of longitudinal MD for the aggregate group. 
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8. Primary Aim treated vs control longitudinal MD 

 

The first part of this chapter describes the aims and methods for the Primary Aim of this thesis.  

The results from the unblinded (treated vs control) analysis are reported, followed by a 

discussion of the results, and a brief summary of the key points of the chapter.   

 

8.1 Aim for Chapter 8 
 

The Aim of this chapter (Aim 5, Primary Aim) was to compare longitudinal changes in MD for 

treated vs control CMN IBIS-II participants.  This chapter completes the work commenced in 

Chapter 7 (Aim 4), the unblinded (aggregate) MD longitudinal analysis.  The Primary Aim was 

accomplished by adding terms for treatment group to the statistical model developed in Aim 4, 

to ascertain if anastrozole treatment was associated with greater decreases in MD over time for 

the treated group compared to the control group.  A series of sensitivity analyses were 

undertaken to examine differences in longitudinal MD for film only and digital mammogram 

only models, as well as different subgroups of participants such as those with known age at 

menopause, and younger (≤60 years) vs older (>60 years) participants.   

 

8.2 Methods 
 

Treatment allocation for the IBIS-II trial remains blinded until at least 2022 when the final 

participants will complete 10 years of follow up.  Direct access to the treatment allocation for 

CMN IBIS-II participants was not possible. Hence this analysis was undertaken in collaboration 

with statisticians at the Queen Mary University of London (QMUL), including the IBIS-II trial 

statistician who has access to the unblinded trial data. Approval for this unblinded analysis was 

sought and received from the IBIS-II trial steering committee.  The statistical plan was 

developed in conjunction with the QMUL statisticians.  
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8.2.1 Study population 
 

The mammographic density measurements utilised for the Primary Aim consisted of all trial 

mammographic episodes up to year 7 collected for the 120 CMN IBIS-II participants 

randomised to treatment with anastrozole or placebo treatment.  All mammographic episodes 

were utilised regardless of whether the participant remained on treatment or not (intention to 

treat analysis). A sensitivity analysis was undertaken using the per-protocol population 

(participants who remained on the protocol-allocated treatment).  

 

8.2.2 Measures 
 

The outcome measures selected for the Primary Aim were percent density and (absolute) dense 

area.  These mammographic density attributes (“phenotypes” [469]) were selected for a number 

of reasons.  In the aggregate group model of longitudinal MD change (Chapter 7, Aim 4), both 

PD and DA were associated with significant (p<0.05) longitudinal MD changes during baseline 

to year 1, and years 1 to 5. As described in Chapter 2, percent density is the most commonly 

utilised and reported mammographic density attribute.   PD is therefore reported in this chapter 

for compatibility with other MD studies.  PD was also the principal MD attribute utilised in 

sensitivity analyses because it is a more widely recognisable MD attribute than DA; the 

aggregate treatment group models (Chapter 7) also suggested longitudinal PD and DA were 

similar.  Furthermore, large (≥10% or more) reductions in PD due to tamoxifen treatment are 

associated with lower BC risk [17, 18, 297]. Women undertaking AI treatment in general show 

slight reductions in PD compared to their counterparts taking no treatment [28, 29]. As for 

tamoxifen, PD may ultimately prove to be a biomarker for endocrine therapy with AI.  Hence 

PD was selected as an outcome measure for the Primary Aim (this chapter).   

 

Dense area is a less utilised MD attribute, because it cannot be effectively assessed using visual 

techniques.  However given the growing predominance of digital mammography and automated 
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methods to measure MD, DA may become a more frequently utilised MD attribute.  Like PD, 

studies have suggested that higher DA is positively associated with BC risk e.g. [401, 498-500]. 

DA alone may be a better predictor of BC risk than PD alone (unadjusted by BMI or weight) 

[184], and hence may be more useful in longitudinal studies of MD and BC risk where BMI, 

weight or other measures of body size are not available.  Reductions in DA due to tamoxifen 

treatment have also been associated with reductions in BC risk [297].  Like PD, DA may 

ultimately be shown to be a useful biomarker for endocrine treatment, including AI therapy.  

Therefore DA was also selected as an outcome measure for the Primary Aim. 

 

The MD attribute adipose area (AA, where AA = total breast area (BA) - DA) has been shown 

to be associated positively [501] but primarily negatively with BC risk [469]. Due to the slight 

expected changes in PD (and therefore DA) due to anastrozole treatment, changes in AA were 

deemed unlikely to provide additional AI treatment longitudinal information compared to PD or 

DA within this small study sample.  Although use of AA as an outcome measure could 

potentially provide useful insights into the effects of endocrine treatment for MD and BC risk, 

this project (due to the small sample size) was not able compare changes in MD and BC risk.  

Hence AA was not utilised as an outcome for the Primary Aim.  

 

Anastrozole treatment was not expected to affect BA differentially compared to controls. This 

assumption was supported by the results of the aggregate group longitudinal model (Aim 4, 

Chapter 7) for BA.  The aggregate models showed BA was associated only with non-significant, 

slight (~200 mm2/year) average annual increases from baseline to year 7.  Therefore BA was not 

included as an outcome measure.   

 

The set of covariates included in the Primary Aim models are described further below.   
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8.3 Statistical methods 
 

A set of statistical scripts in Stata v12.1 was prepared to perform the analysis at QMUL on a 

securely transferred dataset containing the relevant MD and covariate data for the CMN IBIS-II 

participants.  The QMUL collaborators performed testing of the scripts prior to running the 

analysis on the unblinded data, to ensure the scripts ran smoothly in a later version of Stata, and 

to ensure the output would not divulge the treatment status of participants to researchers.  The 

statistical output including log files, graphs and model estimates was securely transferred from 

QMUL when the analysis was completed.  Tables of the model coefficients, standard errors and 

significance were generated after the using log file output from the analysis.   

 

8.3.1 Descriptive analysis 
 

Baseline characteristics by treatment group for all covariates of interest were quantified where 

possible, and the results reviewed for marked differences between the groups.  Summary 

statistics were presented for continuous covariates— age at randomisation, height, weight, BMI, 

age at menarche, age at menopause (natural, ovariectomy, hysterectomy), oral contraceptive 

duration, HRT duration, age at first birth, number of relatives with ovarian cancer and/or BC, 

weighted number of relatives8, time between baseline mammogram and randomisation, PD, DA, 

breast area, adipose area, time between baseline/first mammogram to last mammogram, time 

between randomisation and last mammogram.  Summary statistics were obtained for: the 

numbers of observations (n), mean, standard deviation, median and first (Q1) and third quartile 

(Q3).  Although not all of the continuous parameters have skewed distributions, only median 

(Q1 to Q3) for the baseline characteristics are tabulated.  This was performed for compatibility 

with the reported IBIS-II trial results in Chapter 3 (Table 3-1 [26]) and the subsequent CMN 

baseline characteristics presented in Chapter 6 (Table 6-3).   

 

                                                            
8 The sum of : 1 for a first degree relative, 0.5 for a second degree relative 
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The number of follow up episodes for each treatment group was tabulated.  Due to the potential 

for unblinding of participants, it was not possible to know the numbers of observations in each 

treatment group for the following categorical parameters: age at first birth as a categorical 

parameter (<30y vs 30+y vs nulliparous), parity status, smoking status, previous oral 

contraceptive use, previous HRT use, previous participation in the IBIS-I trial, randomisation 

year (2007 to 2011), baseline mammogram status, baseline episode (mammogram) Version 

(n=85), first episode Version (n=120), follow up episode Version.  Although inappropriate 

because allocation to treatment group was performed randomly, chi-squared and Fisher’s exact 

tests were therefore used to assess for differences in number of treated vs control participants 

allocated to these categorical parameters.   

 

Longitudinal lowess plots (line only, dots suppressed) of percent density (<50%) by 

mammogram Version for each treatment group were used to qualitatively assess for differences 

in MD change over time for each mammogram Version.   

 

8.3.2 Primary Analysis 
 

To achieve the Primary Aim of this thesis, a mixed model with a parsimonious set of covariates 

was used to model change in MD over time for the CMN participants.  MD was modelled as 

square root transformed percent mammographic density (PD) and square root transformed dense 

area (DA), to improve normality assumptions.  Terms for treatment group and treatment group 

by time interaction were added to the aggregate mixed model of longitudinal MD change of 

both treated and control CMN IBIS-II participants developed in Chapter 7 (Aim 4), to ascertain 

if longitudinal MD differences exist for treated vs control groups.   

 

As described in Chapter 7, the parsimonious set of covariates modelled were: age at 

randomisation, BMI, parous age (3 categories: <30 vs 30+ years vs nulliparous), and age at 

menopause. Age at menopause was imputed for 27 participants for whom only age at 

hysterectomy was known.  Age at randomisation and age at menopause were centred at 50 
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years, whilst BMI was centred at 25 kg/m2. Time (in years) was centred at the date of 

randomisation for each participant, and modelled as a piecewise continuous spline consisting of 

3 segments with change points (knots) at 1 and 5 years.  Mammogram Version was modelled as 

a 4-category fixed effect (film, KE52, KE54, Fuji).  The upper level of the model (‘level 2’) was 

participant, and the bottom level of the model (‘level 1’) was the average of PD or DA for each 

mammographic episode.  Two significant RE slopes9, one for film mammograms and one for 

Fuji mammograms, were also modelled at the level of participant; these provided additional 

‘between person’ RE to help explain the variability in the model. An exponential covariance 

structure was utilised as well as robust SE.   

 

8.3.3 Regression diagnostics 
 

Regression diagnostics were undertaken on the two Primary models (PD and DA), and included 

the following:   

 

1. Linear prediction (xb) vs observed (measured) MD, with a line of equality (“x=y” passing 

through graph origin) for reference.  Comparison of the fixed effects (FE) linear predictions 

(‘xb’ in Stata) vs the observed values is performed to assess how well the FE portion of the 

model predicts the observed data, and to check for heteroskedasticity (e.g. increased 

variability at larger predicted values: a funnel shaped plot). Non-constant variance over the 

range of observed values suggests the linear model might not be as efficient as it could be 

(i.e. the standard errors (SE) might be larger than necessary). The presence of 

heteroskedasticity might also indicate that linearity assumptions between the outcome 

parameters (i.e. PD and DA) and the (FE) model components have not been met, or that 

there are other problems with the model such as non-independence between the errors 

(residuals) and observed data [502]. As described in Chapter 7, comparison of the observed 

vs FE predicted values the fixed effect (FE) coefficients (βs) produced by the mixed model 

                                                            
9 As stated in Chapter 7, random effects (RE) were considered to be significant if the SE were ≤ half of 
the RE variance estimate.  (Stata does not provide a p‐value for RE parameters.) 
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describe the mean structure of the model.  These coefficients represent the average MD 

response for all episodes from the CMN participants which were used to build the model.  

The ‘predicted’ MD values are the FE MD linear predictions (‘xb’) for each participant: ŷ 

(predicted value) = xb [10]. The predicted values for each participant are therefore generated 

as a function of the observed (measured) MD values for each participant and the FE 

coefficients generated by the model.  If the model has perfect predictive ability, then the 

(predicted) values output by the model will exactly equal the observed (measured) MD 

input into the model.   All values would then coincide with a line of equality (x=y passing 

through graph origin), because the values predicted by the model would be identical to the 

observed values (x=y).  Perfect prediction is unlikely to occur; nonetheless, the (residual) 

scatter of the predicted vs observed values around the line of equality should be symmetric, 

and not show greater dispersion for some values vs others (i.e. the predicted values should 

be homoscedastic not heteroskedastic).  Due to an initial, early error in this thesis, the 

convention to plot observed values on the horizontal (x) axis, and the predicted values on 

the vertical (y) axis has not been followed.  Please note the axes on this type of scatter plot 

are reversed throughout the thesis: the observed values are plotted on the vertical axis whilst 

the predicted values are plotted on the horizontal axis. Hence the line of equality has been 

substituted for the more typical reference of a line of best fit for the observed vs predicted 

values (y=bx); this is because this relationship is not the same as the x=by, which was 

predicted by the statistical program during creation of the graphs (with an automated script). 

Hence a line of equality has been presented rather than the line of best fit. 

 

2. Linear prediction vs measured MD comparisons of MI and non-MI models. Post estimation 

commands in Stata for multiply imputed (MI) models are limited.  In order to utilise the full 

                                                            
10 The Primary models include more than one FE coefficient, hence the predicted value (expectation) for 
a particular participant for a particular episode more closely resembles ŷ = x1β1 + x2β2 + x2β2 + …., where 
x1 is age at randomisation for that participant and β1 the coefficient for age at randomisation, x2 is the 
participant’s BMI and β2 is the coefficient for BMI, etc.  ŷ is actually a vector of responses (predictions of 
the model); xb is commonly denoted as Χβ, where β is a vector of fixed effects coefficients and Χ is a 
matrix of known variables (e.g. the IBIS‐II participants’ baseline characteristics and MD measurements) 
input into the model. 
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range of post-estimation commands available in Stata for mixed models, the Primary PD 

and DA models were refitted utilising the average of the 25 imputations used to estimate 

age at menopause for 27 CMN participants.  This approach had previously been 

successfully undertaken in Chapter 7 during post-estimation checking of the aggregate 

group models.  Although use of the average of 25 imputations for the age at menopause will 

likely result in underestimation of the SE for this parameter, it did not appear to greatly alter 

the aggregate group model estimates, SE, or predictive ability.  To ascertain whether the 

addition of the terms for treatment group did not invalidate use of the non-MI models during 

RE residual checking for the Primary Aim, the multiply imputed linear predictions (xb) for 

each participant from the mixed models were compared graphically with the predicted 

values which utilised an average of the MI estimates (non-MI models). Estimates from the 

non-MI models were utilised during checking of model normality assumptions for the 

Primary model RE residuals (discussed further below).  Predictions for the RE values— and 

therefore plots of the fitted model predictions (described next)— were then possible to 

generate with the non-MI models.   

 
3. Fitted prediction (xb + random effects (RE)) vs measured MD & line of equality.  As for the 

graphs of the FE linear prediction vs observed MD, graphs of the fitted vs observed values 

are used to check model fit for predicted values using both the FE and RE generated by the 

mixed model.  The FE linear ‘predicted’ (xb) values for mixed models in Stata represent the 

model expectation for the observed values without the addition of values estimated for the 

random effects.  Stata’s mixed model ‘fitted’ values are generated by adding estimates of 

the RE values (best linear unbiased predictions, ‘BLUP’s [503]) to the predicted FE (xb) 

values11.  As described in Chapter 7, the mean structure for a mixed model (the fixed effect 

                                                            
11 The mixed model which contains both fixed and random is often depicted as ŷ = Χβ + Ζu + ε. As 
described previously, ŷ is a vector of responses (predictions), Χ is a matrix of known variables input into 
the model, and β is a vector of estimated FE coefficients. Χβ is the structural (fixed) portion of the mixed 
model.  Ζu + ε are the random effects, which comprise the stochastic (random) portion of the mixed 
model.  Ζ is the design matrix for the estimated random effects u. ε is a vector of (level‐1, within person) 
random errors. Predictions of Ζu are the BLUPs; predictions of Χβ are the FE. 
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β’s) represents the average response (growth curve) for all CMN participants over time. 

This average longitudinal response is composed of individual responses over time 

(individual growth curves for each CMN participant).  Each individual participant’s 

response deviates (to a greater or lesser extent) from the average response (Grand mean 

growth curve, e.g. Figure 7-10) on average by a certain amount.  In the absence of other 

random effects, this deviation from the average response is the between-person RE constant 

(intercept).  As described in Chapter 7, the final Primary Aim model fit was greatly 

improved12 through the incorporation of between-person random effects slopes for film and 

Fuji mammograms (but not other combinations of RE for mammogram Version); hence the 

between person RE each participant (the offset from the FE mean structure for each 

participant) are composed of BLUPs from three different RE (a constant and two random 

slopes).  Although RE for time were modelled, these lost significance after incorporating an 

exponential covariance structure for the (level-1, within person) residuals into the model.  

Presumably, if more variability in response over time existed between the CMN IBIS-II 

participants (re: Chapter 7), RE for time (which represent different, random slopes (changes 

over time) for each participant) may have been retained in the model.  As such— because 

the current model does not contain a RE for time— fitted growth curves for CMN 

participants without any RE for mammogram Version are essentially parallel to the Grand 

mean growth curve generated by the FE part of the model; MD change over time estimates 

for participants who do have RE for film and/or Fuji mammograms however, will vary from 

the Grand mean growth curve.  Each participant’s individual fitted growth curve is offset 

from the Grand mean growth curve by the estimates for all RE (level-2, between person 

residuals) for each participant.   Therefore, to generate fitted values for the mixed model, 

RE values for each participant (for the between-person (BP) constant, BP film mammogram 

slope, and BP Fuji mammogram slope) are added by Stata to the predicted values (xb) for 

each time point for each participant. The amount the observed PD or DA value for a 

                                                            
12 The Bayesian information criterion (BIC), used to compare  the fit of different models, decreased by 
more than 35 units 
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participant’s mammographic episode deviates from that participant’s fitted growth curve is 

the fitted (level-1, within person ‘measurement error’) residual for that episode.  Because 

the RE for each participant tends to account for most of the residual difference between the 

linear prediction (xb) and the observed values for each participant, the fitted (within person, 

level-1) residuals are much smaller than residuals for the FE predicted vs observed values.  

Hence the (fitted) residuals for fitted linear predictions utilising estimates for both the FE 

(xb) and RE (BLUPs) vs observed values tend to fall much closer to the line of equality 

than do the residuals for comparisons made using the observed vs FE predictions (xb) only.  

 

4. Normality examination of the RE constant distributions and fitted model residuals. 

Multivariate normality of the RE constants (level-2, between person residuals) and 

multivariate normality of the model’s fitted (level-1, within person) residuals are important 

assumptions for mixed models [490].  As for the residuals of the linear FE predictions (xb), 

the magnitude of the residuals for the fitted model (FE + RE) should be independent of the 

values of the data input into the model (“x”, independent variables); this means that the 

residuals should have constant variance across the range of the independent variables.  If the 

residuals are independent and random, they will generally form a normal distribution.  Lack 

of normality of the residuals likely means that heteroskedasticity is present, and there are 

probably issues with the model, e.g. non-linearity, or non-independence of observations 

(which should be accounted for by the groups (levels) in the mixed model).  The normality 

of the residuals was qualitatively reviewed via examination of histogram distributions of the 

residuals, and by creating residual plots as per Singer & Willet [490] Figure 4.5: 

 Normal score (normal probability plots vs the raw residuals for different levels of 

the model) 

 Standardised residuals at the different RE model levels   
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8.3.4 Subgroup and sensitivity analyses 
 

A series of sensitivity analyses were undertaken, to further investigate the potential impact of 

certain subgroupings of the data such as film only vs digital only mammograms, and 

participants of different ages. These sensitivity analyses were mainly undertaken for the PD 

Primary model, due to the more frequent use of PD in studies of MD— which makes it a more 

widely recognised and understood MD attribute.  The results for DA in the aggregate model 

(Chapter 7) appeared to be very similar to those for PD; hence repetition of the sensitivity 

analyses for DA was likely to result in redundant information.  The following sensitivity 

analyses are for PD only, unless otherwise specified.   

 

1. PD and DA: Film mammogram only models vs digital mammogram only models. Most 

extant studies of MD have utilised film mammograms; hence measurement and use of film 

mammograms is well validated. Known issues with digital mammograms such as 

differences in post-processing across mammography machine and software versions, as 

discussed in previous chapters, makes use of this type of imaging data more problematic.  

Although a number of studies have successfully used digital mammograms e.g. [182, 504], 

the variability in distributions between the three digital mammographic Versions utilised in 

this study was likely to impact the longitudinal results for this project.  Ideally, an analysis 

utilising each mammographic Version separately should have been undertaken, however the 

sample size was too small to do this.  The treatment x time interaction terms were assessed 

for statistical significance (p<0.05).  Due to the potentially small sample size relative to 

effect size, p-values between 0.05 and 0.1 were also reported.  For the DA digital-only 

model, mammographic Version was modelled with film as the reference category instead of 

the KE52 Version resulting in a different parameterization of the model but no impact on 

association.    

 
2. PD and DA: Full set of covariates vs parsimonious set of covariates.  The full set of 

covariates (Parsimonious covariates with: age at menarche, smoking status, HRT use, oral 
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contraceptive use, IBIS-I participation) was compared to the parsimonious model to assess 

if any marked changes in coefficients occurred.  Although the development of a good model 

for longitudinal change before the addition of important covariates (like treatment) is a 

suggested strategy [36], this comparison was undertaken in the event addition of terms for 

anastrozole treatment greatly altered the behaviour of the model.  

 
3. Check change points from 1.25 to 2.0 years in 0.25 year increments.  As acknowledged above, 

inclusion of terms for treatment group were unlikely to alter the overall longitudinal structure 

of the model.  However, a set of models with change points for the linear spline at 1.25, 1.5, 

1.75 and 2.0 years instead of 1.0 years was generated, to check that the selected change point 

at 1.0 years still best suited the data for the Primary Aim model. An additional set of 

aggregate models was created in response to the results of this sensitivity analysis.  The 

methods for this are described in 8.3.6 Additional methods.  

 
4. Participants with natural & ovariectomy (known age at) menopause only. This analysis was 

undertaken to check that the imputed ages for age at natural menopause for 27 participants 

did not change the conclusions from the Primary models. 

 
5. Parous participants only.  In order to model both non-parous and parous women 

parsimoniously in the model, a categorical parameter was created.  This resulted in loss of 

information for the relationship between MD and age at first birth, because the group of 

parous women was dichotomised.  This check was performed to ascertain if this loss of 

information impacted upon the Primary model. 

 
6. Age at Randomisation: Women <=60 vs women >60 years at baseline.  MD declines with 

age, however this relationship may be attenuated or reversed for older women [189, 471].  

The degree to which treatment with an AI can alter MD may therefore also be smaller for 

older post-menopausal women compared to younger post-menopausal women.  The small 

sample size precluded examination of the effect of age with a three-way interaction between 

time, treatment group and age. 
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7. Censored at time of participant cease of treatment “per protocol analysis”. Cessation of 

randomised treatment with anastrozole prior to five years may dilute the subtle effects of the 

AI on MD, hence this subgroup was modelled to compare to the Primary PD model.  

Episodes were omitted from this analysis at the time treatment was (prematurely) ceased .  

Mammograms up to 3 months after the treatment stop date were considered on-treatment 

mammograms. 

 
8. Mixed model with autoregressive (AR1) covariance structure to be compared against GEE 

model with AR1 correlation structure.   A generalized estimating equation (GEE) approach 

to the modelling was also undertaken, and results compared to the linear mixed model, as 

GEEs are robust to covariance structure misspecification. Generalized estimating equation 

(GEE) models were developed for use on longitudinal data with binary outcomes [505], but 

are also appropriate for continuous outcomes.  GEE is a type of ‘marginal’ or ‘population-

average’ model.  Marginal regression models estimate the “marginal expectation of a 

discrete or continuous response… as a function of explanatory variables” [492]; in other 

words, marginal models estimate the population average response for a categorical or 

continuous dependent variable as a function of set of explanatory covariates.  Given that the 

Primary Aim of this thesis was to characterise the average response of the treated vs control 

CMN IBIS-II participants, a marginal model was of potential interest.  The term ‘marginal’ 

emphasizes that the estimated mean response at each longitudinal time point “depends on 

the only on the covariates of interest, not on any random effects or previous responses” 

[506]. For instance, it is not necessary to model random (latent) effects with GEE, as the 

correlation is treated as a nuisance parameter.  Hence, marginal models differ from mixed 

effect models which specifically model both fixed and random effects (FE and RE).  The FE 

estimates of the mixed model in Chapter 7 represent the mean structure of the modelled 

data, and are analogous to the (population-averaged) estimates that would result if the same 

data were modelled using a GEE approach. Marginal models also differ from another 

popular type of model, the “transition or generally conditional models (e.g., Markov 
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models), where the mean response depends also on previous responses.” [506]   GEE 

estimates (the coefficients or ‘βs’) are robust to misspecifications of the correlations among 

the repeated measurements data.  It is still important to carefully select a working 

correlation structure to improve efficiency [507], but the GEE method provides valid 

standard errors for the estimates even if the correlation structure is misspecified if robust 

(‘sandwich estimator’) SE are used.  GEEs are also able to handle unbalanced data 

(different number of follow ups for each participant) and arbitrary patterns of missing data 

[506].  Despite these excellent properties, a GEE model was not selected for use with the 

Primary Aim because 40% of the data was dropped during GEE modelling in Stata due to 

unequal spacing of observations and unequal numbers (unbalanced data) for 47 participants 

and 1 participant with only one episode. In contrast, the implementation of the linear mixed 

model in Stata was able to estimate model coefficients without loss of data, even though 

some participants had unequal spacing of episodes (i.e. missing episodes). The baseline 

episodes and other trial episodes which were ‘missing’ from the dataset (other than those 

not collected for participants who ceased trial follow up) did not appear to be associated 

with the trial treatment effect or other systematic and/or unobserved factors besides—

possibly— mammogram Version13 and/or date of mammography (which are unrelated to 

the expected effect of anastrozole).  Therefore the missing data was considered to be 

missing at random, which would not affect the assumptions of the mixed linear model. The 

AR covariance structure was selected for the GEE analysis because this most closely 

resembles the theoretical covariance/correlation structures within the longitudinal data, of 

the different correlation/covariance structures common to both GEE and mixed models in 

Stata. For this sensitivity analysis, the mixed model was restricted to the 310 episodes from 

72 participants which were retained by Stata in the GEE model. 

 

                                                            
13
 Some of issues resulting from use of episodes with different mammogram Versions are discussed later 

in this chapter.  Potentially, a selection model or pattern mixture model strategy (re: Singer and Willet 
[2003]) could be employed to correct the problems which resulted from the frequent change in Version 
and/or missing episodes in the dataset. 
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9. PD and DA: mixed model with default standard errors (vs robust error models). These 

models were compared to examine if use of the robust errors compared to default SE 

(original information matrix, OIM) had an impact on the Primary model outcomes.   

 
10. Models of PD and DA –  treatment group RE testing  

a.) Treatment group as a RE slope at the level of id: 

b.) As above + by(group) residual structure  

Although the FE terms for treatment group may (fully) account for differences in variability 

between the anastrozole and control group, potentially, additional between-person variability 

due to the effects of anastrozole could be accounted for with a RE term for treatment group 

(as was seen for the film and Fuji mammogram Version RE slopes). Within-person 

correlation (rho) may also differ between treatment groups, hence a further additional term 

for treatment group was added to the covariance structure specification to explore this 

possibility. 

 

8.3.5 Changes in RE variability, MD growth, with increasing model 
complexity 
 

The changes in between- and within-person variability for the models in Aim 4 (Chapter 7) and 

the Primary Aim (this chapter) were quantified, in order of increasing model complexity.  To 

assess the impact of the parsimonious set of covariates on the variability, an additional set of 

unconditional growth models for PD and DA were fitted.  These new models utilised the same 

time and RE structure as the parsimonious aggregate model (Chapter 7) but the BC risk factor 

covariates were omitted— the established MD confounders age at randomisation, BMI, age at 

menopause and age at first birth.  The ‘technical’ covariate mammogram Version was the sole 

FE covariate retained in this model.  This new model was given the appellation ‘unconditional 

aggregate growth model’.  This new model was between the unconditional growth and 

parsimonious aggregate models in complexity.  The new model was fitted specifically to 

examine if removal of the established MD confounders from the aggregate parsimonious model 
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had any effect on the RE variances or the coefficients and SE for MD change over time (MD 

growth curve).   FE coefficients for the models were compared for differences >10% relative to 

the less complex model’s coefficients, and whether the estimated confidence intervals 

overlapped (± 2SE).   

 

Quantification of the change in RE variance with increasing model complexity was performed 

with a formula similar to equation 7–1 in Chapter 7: the percentage change in RE variability 

relative to the less complex (earlier) model was calculated.  For example, the RE variance for 

the (more complex, unblinded) Primary model was subtracted from the corresponding (blinded) 

parsimonious aggregate RE variance; this difference was then divided by the parsimonious 

aggregate RE variance to provide a value for the relative change in variability with the addition 

of terms for treatment group in the mixed model.  Modelling was undertaken for all 

mammograms (film + digital), as well as the film-only and digital only subsets of 

mammograms.   

 

8.3.6 Additional methods 
 

Back transformation of model coefficients from models with square root transformed dependent 

variables (i.e. sqrtPD, sqrtDA) was performed by using the original intercept value as 

representative of a participant who entered the trial at age 50 years, underwent menopause at 

age 50 who had a BMI of 25 kg/m2.  As described in the Methods for Aim 4 (Chapter 7) , 

squaring the original intercept value provided a back-transformed value for PD (%) or DA 

(mm2) for the reference participant.  The square of the intercept was then subtracted from the 

square of the sum of each coefficient and the intercept:  

 
Equation 8‐1 

 
	 	 Coefficient intercept intercept  

 

This process was repeated to generate back transformed values for the SE, and upper and lower 

values for the 95% confidence interval (95% CI).  As stated in Chapter 7, models with film 
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mammograms as the reference mammogram Version category have higher back transformed 

MD values than the median baseline MD for CMN participants.  An additional set of back 

transformed values for treated group MD change were calculated for PD (reference value 20%) 

and DA (reference value 2700mm2).  Except for the Primary models of all, film-only and 

digital-only mammograms, the remainder of the tabulated coefficients in this chapter report 

square root transformed PD and DA model coefficients.  This was done for ease of reporting as 

well as accuracy. 

 

Estimates of the MD difference (time point 2 – time point 1) from baseline to year 1 were 

calculated by multiplying the estimated MD rate of change for the first continuous time segment 

(baseline to year 1) by 1 year.  Subsequent differences over time were calculated by multiplying 

the estimated MD change per year by the time elapsed during a particular continuous time 

segment, and adding this to the estimated MD difference calculated for the previous time 

segment/s.  The value for the anastrozole (FE) coefficient was interpreted as the relative 

difference in intercept between the treatment groups to create graphs of MD growth.   

 

PD growth curves, selected by first year within-person mammogram Version 

To further examine the impact of different mammogram Versions upon estimates of mean 

longitudinal PD generated by the mixed model,  a number of different PD change over time 

trajectories for different sets of participants were examined qualitatively. The models used the 

non-multiply imputed square root transformed parsimonious PD model developed in Aim 4, 

Chapter 7 (aggregate (blinded) model of treated + control participants), but models were fitted 

with a parameter for categorical time (months since randomisation: 0, 6, 12, 24, 36, 48, 60, 72, 

84) as per the unconditional growth models in Aim 4, instead of the three segment continuous 

spline of time.  Use of categorical time allowed the PD change trajectory to vary freely across 

categories of time. As mentioned previously, the categorical time coefficients model the average 

PD difference from baseline, which is the value of the intercept in the model.  
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The relatively large changes in PD due to within-person Version transitions during baseline to 

year 1 may obfuscate the much smaller changes in PD due to AI treatment.  The largest 

differences in average PD and DA occurred during the film to digital transition (7% difference, 

Table 7-3, Chapter 7); of the 45 total participants with film mammograms, the majority (n=28) 

transitioned from film to digital mammograms after the baseline episode (see Figure 7-5, 

Chapter 7, randomisation year 2008).  MD also increased by 2% to 3%, on average, during the 

intra-digital Version transitions (KE52 to KE54 to Fuji; Table 7-3, Chapter 7); intra-digital 

Version change is therefore also likely to mask relative change in MD due to AI treatment.  

 

Most of the expected difference in PD change between the treated and control groups may occur 

from baseline to year (as per the IBIS-I trial [296]).  A number of different groups were selected 

based on the Version of within-person mammograms present for baseline to year 1.  This was 

undertaken  to investigate how inclusion and exclusion of different groups of participants with 

different first year Versions affected the PD growth trajectory of the first year and later years. 

 

The different groups are described in Table 8-1.  Line plots were created for PD estimated by 

the model for each group, and the graph was also fitted with a square root transformed PD 

decrease of –0.05 per time category as the ‘ideal’ trajectory for the control group.  A change of 

–0.05 square root PD per year equates to a decline of approximately –0.5% PD/year.  This 

decline in PD is less marked than the typical decline of about –1%/year for women aged 40+.  

However –0.5% PD per year for the CMN IBIS-II control group is likely appropriate because 

median age of the CMN participants was 62 years, and the decline in PD eases with age [144].  

 

Although each group has been selected based on the within-person Version/s of mammograms 

present during baseline to year 1, all episodes after year 1 are modelled, regardless of their 

Version.  Inclusion of all post year 1 episodes provides qualitative insights into the contributions 

of each group of participants to the years 1 to 7 (aggregate) PD growth curve.   
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Table 8‐1 First year (baseline to year 1) groups, selected by Version of first year mammograms 

First Year group  Rationale for group, and first year mammogram Versions 

All Film First Year 
(Group 1) 
n=14 (participants) 

The film only Primary model displayed the expected reduction in PD for 
the anastrozole treated group relative to the control group.  This group 
of participants has only film mammograms from baseline to year 1, to 
emulate the PD change over time estimated by the film only Primary 
model.   
 

Same version, film + 
digital, in the First Year 
(Group 2) 
n=31 

This group of participants has repeated (within person) episodes from 
the same Version during the first year.  In other words, only 
participants with multiple episodes of film (Group 1) OR KE52 
mammograms OR with KE54 mammograms during the first year are 
included in this group.  (No Fuji baseline or 6 month mammograms 
were collected).  This group was selected to review the PD trajectory 
for participants whose Version was stable from baseline to year 1. 
 

Film to digital transition in 
Year 1  
(Group 3) 
n=36 

This group of participants had baseline or 6 month films but 
subsequent mammograms which were digital.  This group was selected 
to show the effects on PD change for participants transitioning from 
film to digital in the first year. 
 

Same version  + film to 
digital transition in Year 1  
(Group 4) 
n=61 

This group contains all participants from Group 2, but adds in 
participants who had baseline or 6 month films but whose subsequent 
mammograms were digital (Group 3).  This group was created to 
examine the PD growth effects of women transitioning from film to 
digital during the first year relative to those whose Versions were 
stable.  
 

All film, including all film 
to digital transition in the 
First Year (Group 5) 
n=45 
 

This group has Group 1 participants, as well as the participants who 
transitioned from film to digital within the first year.  This growth curve 
shows the effects of including episodes transitioning from film to digital 
in the first year (in comparison to the Group 1 first year trajectories) 
 

Digital to digital transition 
during the First Year  
(Group 6) 
n=32 

This group includes only participants who transitioned between digital 
Versions in the First Year.  Hence only participants transitioning from 
KE52 to KE54 (or Fuji) mammograms OR participants transitioning from 
KE54 to Fuji mammograms are included in this group. This growth curve 
provides insights into the PD changes caused by intra‐digital transitions 
 

Same digital Version, First 
Year (Group 7) 
n=17 
 

This group is a subset of Group 2, but does not include participants with 
films only in the first year.  This group therefore has women with 
repeated KE52 and KE54 mammograms during the first year. 

All digital Versions in the 
First Year (Group 8) 
n=45 
 
 

This group is the combination of Group 5 and Group 6, to show the 
effects of merging these groups on PD growth. Groups 5 and 6 overlap 
slightly because some participants changed digital Versions after the 6 
month follow up. 

All digital Versions in the 
First Year, including 
Unknown Versions 
(Group 9)  n=46 
 

This group is the combination of Group 5 and Group 6 (i.e. Group 7), 
with the addition of three episodes of Unknown digital Version.  (One 
episode of unknown digital Version is not included, because it followed 
a baseline film episode). 
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8.4 Results 

8.4.1 Descriptive characteristics at baseline 
 
Baseline characteristics for all 120 CMN IBIS-II participants who contributed mammograms to 

this analysis are shown in Table 8-2; these baseline characteristics appear to be balanced 

between the treatment groups.  Median age at randomisation was 61.1 years for control and 62.3 

years for anastrozole treated participants.  Median BMI (the other strong MD confounder) was 

28.0 for controls and 28.6 for anastrozole treated participants.   

 

Table 8‐2 CMN IBIS‐II participant baseline characteristics, continuous covariates
1
, by treatment group 

Parameter 

CONTROL GROUP ANASTROZOLE GROUP

N  Median 
25

th
–75

th

percentile 
(Q1–Q3) 

N  Median 
25

th
–75

th

percentile 
(Q1–Q3) 

Age (years)  58 61.1 57.1 64.7 62 62.3  56.8  65.8
Height (cm)  58 162 157 167 62 162  157  166
Weight (kg)  58 75 66 92 62 74.5  66  83
BMI (kg/m2)  58 28.0 26 34 62 28.6  26.0  31.6
Age at menarche (years)  58 13 12 14 62 13  12  14
Age at menopause  (years)     
   Natural menopause   27 49 47 51 30 52  48  53
   Hysterectomy age  31 46 39 51 33 41  36  46
   Ovarian oblation age  20 46 40 52 20 45  37  50.5
Age at first birth (years)  56 23 21 25 56 22  19.5  24.5
Previous HRT (months)  38 43 12 84 36 60  24  114
Oral Contraceptive (months) 54 108 60 130 58 78  36  120
Total # relatives with BC 
and/or ovarian cancer 

58  2  1  3  62  2  1  3 

1 Due to the potential for unblinding of participants, the number of participants in each category of 
categorical covariates could not be reported by treatment group. 
 
 

Comparisons between the groups were also made for categorical parameters but the exact 

numbers (and percentages) allocated to categorical parameters by treatment group could not be 

provided by the QMUL statisticians, because of the potential for unblinding of researchers  to 

participant group allocation.  Although inappropriate because treatment group was randomly 

allocated, only non-significant (p>0.25, Fisher’s exact test) differences were found between 

treatment group for the following categorical parameters: parous vs non-parous women, age at 

first birth (3 category parameter <30 years, ≥ 30 years, non-parous), previous HRT use 

(true/false), previous oral contraceptive use (true/false), smoking status (current, past, never), 

and previous IBIS-I participation (true/false).   
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Baseline MD related parameters for the two treatment groups for the 85 CMN participants who 

had baseline mammograms are provided in Table 8-3.  Although baseline MD parameters 

appear to be balanced between the treatment groups, median PD was slightly higher in the 

control group than the treated group — 18.3% vs 16.7%.  This difference in median baseline PD 

of 1.6% is approximately the same as expected for the change in PD due to anastrozole 

treatment.  Median DA (mm2) was also marginally higher in the control vs treated group— 

2757mm2 vs 2684mm2.   

 

Table 8‐3 Measures of central tendency for MD baseline parameters, Control vs treated group 

Parameter 

CONTROL GROUP ANASTROZOLE GROUP 

N  Median 
25th–75th

percentile 
(Q1–Q3) 

N  Median 
25th–75th 
percentile 
(Q1–Q3) 

Months before 
randomisation,  
baseline episode 

41  ‐3  ‐5  ‐1  44  ‐2  ‐6.5  ‐1 

Percent Density (PD, %)   41  18.3  9.4 29.1 44 16.7 8.0  25.2 
Dense Area (mm2)   41  2757  1455 5033 44 2684 1356  4408 
Breast Area (mm2)   41  17061 13347 21804 44 16682 14340  21896 
Adipose Area (mm2)   41  13122 9836 18773 44 14098 10749  19811 
Percent Adipose (%)   41  81.7  70.9 90.6 44 83.3 74.8  92.0 
PD, square root transf.  41  4.3  3.0 5.4 44 4.1 2.8  5.0 
DA, square root transf.  41  52.2  38 70 44 51.4 36  66 

transf. transformed (square root transformed) 
Only the 85 participants with baseline mammograms are included in this table 

 
The number of mammograms for each treatment group appeared to be balanced across all 

follow ups from baseline (year 0) to year 7, Table 8-4. No statistical difference in randomisation 

year or frequency of mammogram Version was detected between treatment groups (p>0.05, 

Fisher’s exact test: exact numbers not divulged for this analysis due to potential for unblinding). 

 

Table 8‐4 Number of mammographic episode for each follow up, by Treatment group 

Treatment 
Group 

Follow up number (years)

0  0.5  1  2 3 4 5 6 7 

Control  41  11  31  43 43 41 29 14 5 
Anastrozole  44  14  29  50 48 41 35 16 5 

 

The lowess plots of (raw, ‘unconditional’) longitudinal PD for each mammogram Version by 

treatment group did not appear markedly different, Figure 8-1 and Figure 8-2. Much of the 

variability in the distributions of the mammogram Versions between the treatment groups is 

likely because different sets of participants contribute to the lowess plots at different times. 
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Figure 8‐1 Lowess plots of longitudinal PD by mammogram Version, Control group 

 

 
Figure 8‐2 Lowess plots of longitudinal PD by mammogram Version, Anastrozole group 
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8.4.2 Primary analysis 
 
The coefficients, standard errors (SE), p-values (P), and 95% confidence intervals (95% CI) for 

the Primary Model results for square root transformed PD and DA are tabulated in Table 8-5.   

 

Anastrozole treatment vs no treatment was associated a non-significantly (p=0.13) lower 

average intercept of –0.33 in square root PD for the Primary model.  Whilst a significant 

(p=0.03) mean annual decrease in square root transformed PD of –0.14 was observed between 

baseline and year 1 for the control group, the change for the anastrozole treated participants 

relative to controls over the same time period was not significant (0.02/year, p=0.8).  Similarly, 

whilst a significant annual increase in square root transformed PD was observed for the control 

participants for years 1 to 5 (0.05/year, p=0.04), the corresponding difference in annual change 

for anastrozole treated participants relative to controls was not significant (–0.02/year, p=0.6).  

Change over time in square root transformed PD for years 5 to 7 was non-significant for both 

the control group and the difference in change for anastrozole treated participants relative to 

controls.  

 

The results for DA were similar, except the annual decline in square root transformed DA from 

baseline to year 1 for the control group was marginally non-significant at the 5% level (p=0.07).  

No significant interaction between treatment group and annual change in DA during the three 

time periods (baseline to year 1, years 1 to 5, years 5 to 7) was observed.  Hence anastrozole 

treatment was not significantly associated with increases or decreases, relative to the control 

group, in PD or DA for years 0 to 7 for the all mammogram Primary models. 

 

The coefficient for age at randomisation showed the expected inverse (negative) relationship for 

PD, and was statistically significant (p=0.007). The relationship between age at randomisation 

and DA was also negative, but not significant (p=0.12).  As noted previously, this may have 

occurred because the median age of the participants was 61 to 62 years, and the inverse 
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Table 8‐5 Square root transformed Primary Model results for square root transformed PD DA, All mammograms (film+digital), 540 episodes 

  Square root transformed Percent Density  Square root transformed Dense Area 

  ALL MAMMOGRAMS  120 participants 540 episodes (follow ups) 

Covariate  Coefficient (β)   SE      P  95% CI    Coefficient (β)   SE      P  95% CI   

Age at Randomisation (years)  ‐0.04  0.02   0.007  ‐0.07  ‐0.01  ‐0.38  0.25  0.12  ‐0.87  0.10 

BMI (kg/m2)  ‐0.12  0.02  <0.001  ‐0.15  ‐0.08  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Age at Menopause (years)   0.06  0.02   0.003  0.02  0.10   0.88  0.28  0.001  0.34  1.4 

Age First Birth, ≥30y vs <30y (ref)   1.06  0.33   0.001  0.41  1.70   21.4  6.5  0.001  8.7  34.1 

Non‐parous vs <30y (ref)   0.03  0.29  0.92  ‐0.54  0.60  6.3  4.3  0.15  ‐2.3  14.8 

Mammogram Version, KE52 v Film(ref)  ‐0.76  0.12  <0.001  ‐1.00  ‐0.52  ‐10.3  1.5  <0.001  ‐13.4  ‐7.3 

 KE54 v Film (ref)  ‐0.48  0.13  <0.001  ‐0.74  ‐0.22  ‐6.5  1.8  <0.001  ‐10.0  ‐3.1 

    Fuji v Film (ref)  ‐0.29  0.15   0.06  ‐0.59  0.02  ‐4.6  2.2  0.033  ‐8.8  ‐0.36 

Anastrozole (no=ref)  ‐0.33  0.22   0.13  ‐0.76  0.10  ‐2.8  3.3  0.39  ‐9.3  3.6 

Intercept   5.42  0.30  <0.001  4.84  6.00   61.4  4.0  <0.001  53.6  69.2 

  Annual change in MD (All mammograms) 

Baseline to Year 1  ‐0.14  0.07  0.03  ‐0.27  ‐0.01  ‐1.5  0.83  0.073  ‐3.1  0.14 

Years 1 to 5   0.05  0.03  0.04  0.00  0.10  1.0  0.37  0.006  0.28  1.7 

Years 5 to 7  ‐0.02  0.07  0.75  ‐0.16  0.12   0.30  1.0  0.77  ‐1.7  2.3 

Anastrozole x Baseline to Year 1   0.02  0.08  0.80  ‐0.14  0.18  ‐0.17  1.1  0.87  ‐2.3  1.9 

Anastrozole x Year 1 to Year 5  ‐0.02  0.03  0.56  ‐0.07  0.04  ‐0.39  0.3  0.27  ‐1.1  0.30 

Anastrozole x Year 5 to Year 7   0.01  0.12  0.94  ‐0.22  0.24  ‐0.48  1.6  0.77  ‐3.7  2.7 

  Random effects  – estimates for between‐ and within‐person change 

Between person  variance                   

Film mammograms  0.29  0.09  *  0.16  0.52   50.2  13.7  *  29.4  85.6 

Fuji mammograms  0.15  0.04  *  0.09  0.24   27.9  7.0  *  17.2  45.5 

Intercept  1.24  0.26  *  0.82  1.88   274.1  41.9  *  203.2  369.8 

Within person correlation (rho)  0.47  0.14  *  0.23  0.72   0.25  0.11  *  0.10  0.52 

Within person variance  0.09  0.03  *  0.05  0.16   12.3  2.2  *  8.7  17.4 

P p‐value; x interaction; y years ; ref reference category; * p<0.05 because the SE are one‐half the size of the variance estimate or less 
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Table 8‐6 Back transformed Primary Model results for PD (%) and DA (mm2), All mammograms (film+digital), 540 episodes 

  Back transformed Percent Density (PD %)  Back transformed Dense Area (DA mm2) 

 
ALL MAMMOGRAMS 

120 participants 540 episodes (follow ups) 

Covariate  Coefficient (β)   SE      P  95% CI    Coefficient (β)  SE      P  95% CI   

Age at Rand. (years)  ‐0.46  0.17  0.007  ‐0.80  ‐0.13  ‐47  30  0.12  ‐106  12 

BMI (kg/m2)  ‐1.27  0.19  <0.001  ‐1.63  ‐0.91  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Menopause (years)   0.63  0.21  0.003  0.22   1.05  109  34  0.001  42  177 

Age First Birth, ≥30y vs <30y (ref)  12.57  3.67  0.001  4.65   21.32  3085  839  0.001  1142  5351 

Non‐parous vs <30y (ref)   0.31  3.22  0.92  ‐5.55   6.82  807  553  0.15  ‐273  2033 

Mammogram Version, KE52 v Film(ref)  ‐7.67  1.33  <0.001  ‐9.82  ‐5.40  ‐1163  192  <0.001  ‐1464  ‐845 

 KE54 v Film (ref)  ‐4.99  1.46  <0.001  ‐7.50  ‐2.35  ‐762  219  <0.001  ‐1128  ‐372 

    Fuji v Film (ref)  ‐3.01  1.69  0.06  ‐6.02   0.18  ‐542  269  0.033  ‐1004  ‐44 

Anastrozole (no=ref)  ‐3.47  2.43  0.13  ‐7.67   1.10  ‐340  415  0.39  ‐1054  457 

Intercept   29.4  3.29  <0.001  23.5   36.0  3773  505  <0.001  2875  4793 

  Annual change in MD (All mammograms), model intercept is the reference value 

Baseline to Year 1  ‐1.48  0.71  0.03  ‐2.81  ‐0.11  ‐180  102  0.073  ‐371  17 

Years 1 to 5   0.58  0.28  0.04  0.02   1.14   125   46  0.006  35  216 

Years 5 to 7  ‐0.24  0.77  0.75  ‐1.71   1.26   37  126  0.77  ‐206  288 

Anastrozole x Baseline to Year 1   0.22  0.89  0.80  ‐1.49   1.98  ‐21  133  0.87  ‐273  241 

Anastrozole x Year 1 to Year 5  ‐0.17  0.29  0.56  ‐0.72   0.39  ‐47   43  0.27  ‐130  37 

Anastrozole x Year 5 to Year 7   0.09  1.28  0.94  ‐2.34   2.63  ‐58  205  0.77  ‐441  344 

P p‐value; x interaction; These back transformed values are representative for a participant randomised at age 50y, BMI of 25, menopause at age 50y, and AFB <30y. 
 
Table 8‐7 Anastrozole group MD change, back transformed Primary Model results,  all mammograms, 20% PD and DA 2700mm2 reference values 

Covariate 
Treatment group annual change in MD (All mammograms) 

PD (%) , reference value 20% PD  DA mm2, reference value 2700mm2 (27cm2) 

Anastrozole x Baseline to Year 1   0.18%/year  ‐18 mm2/year 

Anastrozole x Year 1 to Year 5  ‐0.14%/ year  ‐40 mm2/year 

Anastrozole x Year 5 to Year 7   0.08%/year  ‐50 mm2/year 
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association between age and PD (and to a lesser extent, DA) weakens with age.  Body mass 

index showed the expected inverse and statistically significant relationship with PD.  Age at 

menopause and age at first birth ≥30 years relative to women <30 years showed the expected 

positive relationship with PD and DA.  For age at first birth, the coefficient for non-parous 

women (relative to first birth at <30 years of age) was positive but not significant for both PD 

and DA. Each digital mammogram Version was negatively associated with PD and DA relative 

to film; these associations were all significant except for PD and Fuji mammograms which were 

marginally non-significant at the 5% level (p=0.06). 

 

The variance for each random effect (RE) in the PD and DA models was significant (the 

coefficients were at least twice as large as the corresponding SE).  This significant variability of 

the RE intercepts showed that further covariates could be added to the models to help explain 

both between and within person variability.   

 

FE model coefficients were back transformed and are tabulated in Table 8-6, above. The 

coefficients in this table are representative of the average response for a CMN IBIS-II 

participant who was randomised at age 50, experienced menopause at age 50, and who has a 

BMI of 25.  Longitudinal change by treatment group for back transformed PD is shown in 

Figure 8-3. Very little difference in longitudinal change is noted between the groups. 

 

The difference of the mean FE intercept for back transformed PD (in %) for anastrozole treated 

participants relative to controls was –3.5% (SE 2.4%), whilst the corresponding (adjusted) for 

the back transformed anastrozole intercept for DA was –340 mm2 (–3.4cm2).   The use of the 

relatively high intercept PD and DA values (e.g. almost 30% PD) during back transformation in 

Table 8-6 has slightly inflated the estimate of the intercepts; substitution of more representative 

reference values for PD (20%, Table 6-6 and Table 8-3) and DA (2700mm2) yields (adjusted) 

anastrozole intercept values of –3% for PD and –283mm2 for DA.  These latter back 

transformed estimates are larger than the (raw ‘unadjusted’) baseline differences of –1.6% for 



Chapter 8 

318 

PD and –73mm2 for DA, Table 8-3. The back transformed anastrozole intercepts for PD and DA 

in Table 8-6 also may be larger than the treated vs control difference in median PD and DA at 

baseline because the model uses film mammograms as the base category (Version) which has 

higher median and Q1 to Q3 values for PD and DA (e.g. Table 6-6) compared to median and Q1 

to Q3 PD and DA for all mammograms, Table 8-3. 

    
Figure 8‐3 Longitudinal back transformed PD by Treatment Group, all mammograms (540 episodes) 
The estimated growth curves for the treated and control groups are almost parallel to each other, 
reflecting the small annual PD change for the treatment group relative to the control group 

 

8.4.3 Regression diagnostics 
 

8.4.3.1 Linear prediction (xb) vs observed (measured) MD 

The Primary model for PD appeared to fit the observed (measured) values reasonably well, 

Figure 8-4. The predicted values (xb) from the FE part of the mixed model on the x-axis tend to 

be similar to their observed counterparts on the y-axis; however the line of equality does not 

evenly bisect the plotted data.  Square root transformed PD predicted values >5 tend to be 

smaller than the observed values.  The model may therefore under predict PD for women with 

>25% density.  The model may also slightly over predict PD at smaller (<4) observed values.  
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Little heteroskedasticity appears to be present.   

 
Figure 8‐4 PD Primary Model, linear prediction (xb) vs observed (measured) values 

 

 
Figure 8‐5 DA Primary Model, linear prediction (xb) vs observed (measured) values 
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There are a few outliers where predicted and observed values for the participant with very high 

density (PD ~80%, observed square root transformed values of ~9) are particularly mismatched.  

This indicates the Primary model is likely to under predict PD for women with high PD (≥50%).  

The model may not be a good fit for participants with highly dense breasts. 

 

The Primary Model for DA likewise appeared to fit the observed values for (square root 

transformed) DA reasonably well without much evidence of heteroskedasticity, Figure 8-5.    

However, the scatter plot of Figure 8-5 appears to have curved clustering of data in the right half 

of the central cluster (at predicted values >40 (on the x-axis)) which tapers out at around 60; 

there seems to be a compression of DA for values which should be more evenly distributed 

between values of 40 to 75 on the x-axis.  In contrast the PD plot scatter plot (Figure 8-4) is 

more evenly distributed over most more of its higher predicted values (>4). The reasons for this 

compression and curvature of the DA central cluster are not clear. This curvature may be due to 

chance but may indicate a higher order (non-linear) relationship in DA model. The PD and DA 

models differ, because some of the factors associated with PD (primarily BMI) are not 

associated as strongly with DA as they are PD; as mentioned previously, women with high PD 

do not always have high DA, and the reverse can be true as well.  The model seems to fit the 

observed DA reasonably well for most women with observed square root transformed DA 

values of <60, which equates to <3,600 mm2 or <36cm2 of dense area on the mammograms. The 

sparseness for predicted DA between 50 and 70 may be due to the relatively small sample size 

of women in the data (n=120), especially those with DA (>5000mm2, or 71mm in square root 

transformed units).  As for the PD Primary model, the predicted DA for the woman with high 

DA (whose square root transformed DA is >75mm (5,600mm2)) is underestimated by the DA 

Primary model. 
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8.4.3.2 MD prediction comparisons of MI and non-MI models 

The MI and non-MI linear predictions are visually similar for both the PD and DA Primary 

models, Figure 8-6 and Figure 8-7.   No systematic or unusual differences appear to exist be-

tween the pairs of graphs.  These observed vs predicted graphs are quite similar, thus the fitted  

RE residuals for the MI models would likely resemble the fitted RE residuals for the non-MI 

Primary models, had they been possible to predict within the statistical program.  This is partly 

because age at menopause is only imputed for 27 of 120 (23%) of total participants. 

 

 
Figure 8‐6 PD Primary model, MI (left) vs non‐MI (right) predicted vs observed values 
 

 
Figure 8‐7 DA Primary model, MI (left) vs non‐MI (right) predicted vs observed values 
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8.4.3.3 Fitted prediction vs measured MD 

The Primary model best predictions for the outcome based on both the RE and FE (the best 

linear unbiased predictions (BLUPs) of the random effects plus the FE linear predictions) 

provide a very good fit for the observed values, Figure 8-8 and Figure 8-9.  The PD Primary 

model may still slightly under predict the fitted values at lower observed values of PD and 

slightly over predict at higher PD.  The fitted values for DA are slightly more evenly distributed 

around the line of equality than are the ones for PD over the entire range of observed values; no 

trend to under or over predict is visible.  The mixed model appears to fit well for the fitted 

Primary outcomes.   

 

 
Figure 8‐8 PD Primary model fitted (FE + RE) vs observed values 
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Figure 8‐9 DA Primary model fitted (FE + RE) vs observed values 

 

 

 

8.4.3.4 Normality assessment of the fitted model RE distributions 

Histograms of the best linear unbiased predictions (BLUPs) for the between person (level 2) 

random effects and model residuals (at level 1) for the PD (Figure 8-10) and DA (Figure 8-12) 

Primary models show that the distribution of the BLUPs for each RE and for the within person 

residuals are approximately normally and symmetrically distributed.  Participants with high PD 

and/or high DA have caused a small number of right skewed BLUPs; the peak at 0 for the film 

BLUPs are due to few film mammograms in the dataset. The film mammogram RE residuals for 

the PD and DA Primary models are shown in the upper row of Figure 8-11 and Figure 8-13.  

The flattened area in the inverse normal plot (left column, upper row) and the high number of 0 

values on the standardised residual plots (right column upper row) also reflect the few par-

ticipants with film mammograms in the dataset.  The remainder of the normal probability and 

standardised residuals plots for PD and DA (Fuji mammogram Version RE, between person and 

within person residuals) demonstrate that the residuals are approximately normally distributed.  
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Figure 8‐10 PD Primary model histograms of between person RE and within person residuals 
The histograms of the predicted RE and residuals show approximately normal distributions 
The large peak at 0 for the film Version RE is due to few film episodes in the data set 
 
 

 
Figure 8‐11 PD Primary model RE and residual assumption checking 
Left column– normal probability plots for the best linear unbiased predictions (BLUPs) of the between 
person random effects and within person residuals; Right column– standardised residual plots of the RE 
BLUPs and residuals.  Between person (level 2) RE: Top row– Film Version; Second row– Fuji Version; 
Third row– between person RE intercept. Bottom row– Within person (level 1) residuals 
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Figure 8‐12 DA Primary model histograms of between person RE and within person residuals 
The histograms of the predicted RE and residuals show approximately normal distributions 
The large peak at 0 for the film Version RE is due to few film episodes in the data set 

 

 
Figure 8‐13 DA Primary model RE and residual assumption checking 
Left column– normal probability plots for the best linear unbiased predictions (BLUPs) of the between 
person random effects and within person residuals; Right column– standardised residual plots of the RE 
BLUPs and residuals.  Between person (level 2) RE: Top row– Film Version; Second row– Fuji Version; 
Third row– between person RE intercept. Bottom row– Within person (level 1) residuals 
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8.4.4 Subgroup and sensitivity analyses 
 

This section contains the subgroup analyses by mammogram Type (film only and digital only 

models), as well as other sensitivity analyses. 

8.4.4.1 Primary model, by mammogram Type (film only, digital only) 

8.4.4.1.1 Film mammogram only Primary Model 
 

The results for the PD and DA Primary models with film mammograms only are shown in 

Table 8-8.  Sixty-three mammographic episodes from 45 participants were included in the film 

mammogram only subset used to generate the models. Back transformed FE model outcomes 

for PD (in %) and DA (in mm2) are shown in Table 8-9.  The back transformed values 

correspond to the average response for a representative CMN IBIS-II participant who was 

randomised at age 50, underwent menopause at age 50 with a BMI of 25 kg/m2.   

 

The intercept for the back transformed PD values is 33%, and was calculated by squaring the 

intercept for the square root transformed PD model (5.71). The value for the back transformed 

intercept implies that average baseline PD for the representative participant (randomisation and 

menopause at age 50y and BMI of 25) with film mammograms is 33%.  This is slightly higher 

than the back transformed value of 29% for the representative participant in the all 

mammograms mixed model, Table 8-6. Film mammograms have higher PD on average than 

digital mammograms in this dataset, which explains the difference in intercept between the film 

only and all mammograms models. 

 

Interestingly, the PD interaction term of anastrozole treatment with the term for time between 

baseline to year 1 was significant (p=0.017) with coefficient values of –0.33/year for square root 

transformed PD and –3.7% /year for back transformed PD (%).  The interaction term between 

anastrozole treatment and change in DA over the first year was also significant (p=0.016); the 

interaction term coefficient for square root transformed DA was –4.6/year and –547 mm2/year  
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Table 8‐8 Square root transformed Primary Model of PD and DA, film mammograms only (63 episodes) 

  Square root transformed Percent Density  Square root transformed Dense Area 

 
FILM MAMMOGRAMS ONLY 

45 participants, 63 total episodes (follow ups)† 

Covariate  Coefficient (β)  SE      P  95% CI    Coefficient (β)  SE      P  95% CI   

Age at Randomisation  (years)  ‐0.03  0.04  0.39  ‐0.11  0.04  ‐0.24  0.58  0.68  ‐1.4  0.90 

BMI (kg/m2)  ‐0.20  0.05  <0.001  ‐0.29  ‐0.10  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Age at Menopause (years)  0.03  0.05  0.63  ‐0.08  0.13  0.25  0.74  0.74  ‐1.2  1.7 

Age First Birth, ≥30y vs <30y (ref)  0.94  0.69  0.17  ‐0.41  2.29  26.5  17.7  0.14  ‐8.3  61.3 

Non‐parous vs <30y (ref)
 1
  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Anastrozole (no=ref)  ‐0.30  0.44  0.49  ‐1.16  0.56  ‐5.40  6.8  0.43  ‐18.7  7.9 

Intercept  5.7  0.54  <0.001  4.7  6.8  62.1  7.3  <0.001  47.7  76.5 

  Annual change in MD (All mammograms) 

Baseline to Year 1  0.01  0.09  0.10  ‐0.17  0.19  0.50  1.11  0.65  ‐1.7  2.7 

Years 1 to 52  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Years 5 to 72  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Anastrozole x Baseline to Year 1  ‐0.33  0.14  0.017  ‐0.60  ‐0.06  ‐4.6  1.9  0.016  ‐8.29  ‐0.86 

Anastrozole x Year 1 to Year 52  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Anastrozole x Year 5 to Year 72  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

  Random effects  – estimates for between‐ and within‐person change 

Between person  variance                   

Intercept  2.2  0.63  *  1.25  3.84  0.0064  NC  ns     

Within person correlation (rho)  0.014  0.046  ns  <0.0001 0.90  0.99  1.5  ns  2.1E‐98  1 

Within person variance  0.039  0.012  *  0.021  0.071  506  58457  ns  2.77E‐96  9.2E+100 

P p‐value; x interaction; ref reference category; ns not significant; NC not calculated (by the statistical program);  y years; 
† 45 par cipants contributed 63 mammographic episodes to this analysis (~1.4 episodes per par cipant) 
* p<0.05, SE are ≤0.5 times the variance estimate 
1 results for non‐parous women are not applicable because there were no non‐parous women with film mammograms 
2 only a single film episode was available after the first year of follow up; hence results for years 1 to 5 were omitted. Results for years 5 to 7 are not applicable 
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Table 8‐9 Back transformed Primary Model of PD (%) and DA (mm2), film mammograms only (63 episodes) 

  Back transformed Percent Density (%)  Back transformed Dense Area (mm2) 

 
FILM MAMMOGRAMS ONLY 

45 participants 63 total episodes (follow ups)† 

Covariate  Coefficient (β)  SE  P  95% CI    Coefficient (β)  SE  P  95% CI   

Age at Randomisation (years)  ‐0.37  0.43  0.39  ‐1.2  0.47  ‐30.3  73.0  0.68  ‐171  113 

BMI (kg/m2)  ‐2.2  0.54  <0.001  ‐3.2  ‐1.2  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Age at Menopause (years)  0.29  0.60  0.63  ‐0.89  1.49  30.6  91.9  0.74  ‐147  213 

Age First Birth, ≥30y vs <30y (ref)  11.6  8.3  0.17  ‐4.5  31.4  3989  2517  0.14  ‐960  11356 

Non‐parous vs <30y (ref)
1
  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Anastrozole (no=ref)  ‐3.3  5.2  0.49  ‐11.9  6.7  ‐641  888  0.43  ‐1971  1043 

Intercept  32.6  6.4  <0.001  21.7  45.8  3854  965  <0.001  2275  5846 

  Annual change in MD (All mammograms) 

Baseline to Year 1  0.11  1.05  0.10  ‐1.9  2.2  62.3  139.5  0.65  ‐206  340 

Years 1 to 52  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Years 5 to 72  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Anastrozole x Baseline to Year 1  ‐3.7  1.6  0.017  ‐6.5  ‐0.68  ‐546.9 238.9 0.016  ‐960  ‐106 

Anastrozole x Year 1 to Year 52  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Anastrozole x Year 5 to Year 72  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

P p‐value; x interaction; ref reference category; y years; 
† 45 par cipants contributed 63 mammographic episodes to this analysis (~1.4 episodes per par cipant) 
1 results for non‐parous women are not applicable because there were no non‐parous women with film mammograms 
2 only a single film episode was available after the first year of follow up; hence results for years 1 to 5 were omitted. Results for years 5 to 7 are not applicable 
These back transformed values are representative for a participant randomised at age 50y, BMI of 25, menopause at age 50y, and AFB <30y 
 
Table 8‐10 Anastrozole group MD change, back transformed Primary Model results,  film mammograms, 20% PD and DA 2700mm2 reference values 

Covariate 
Treatment group annual change in MD (Film mammograms only) 

PD (%) , reference value 20% PD  DA mm2, reference value 2700mm2 (27cm2) 

Anastrozole x Baseline to Year 1  ‐2.9%/year  ‐455 mm2/year 



Chapter 8 

329 

(–5.5cm2/year) for back transformed DA.  Treatment with anastrozole appeared to be associated 

with a reduction in both PD and DA during the first year of therapy for IBIS-II imaging 

undertaken with film mammograms.   

 

The baseline to year 1 annual change in PD coefficient for the control group was non-significant 

(p=0.1) but positive.  This was rather unexpected.  The back transformed, slight change of 

+0.11% per year is not likely to be clinically significant however.  The corresponding, non-

significant (p=0.65) annual control group increase in DA (62mm2 (= 0.6cm2)) is similarly 

unlikely to be clinically significant. Longitudinal change by treatment group for back 

transformed PD for the film only Primary Model is shown in Figure 8-14. 

   
Figure 8‐14 Back transformed longitudinal PD by Treatment Group, film only Primary Model 
The film only model estimated growth curves diverge from baseline to year 1 for the treatment groups, 
reflecting the significant decline in PD for the treated group relative to the control group. 

 

The remainder of the coefficient signs and magnitude are generally in keeping with the expected 

direction of the relationship.  A negative relationship between age at randomisation and 

anastrozole treatment is seen for both PD and DA; BMI is also negatively associated with PD.  

Age at menopause and age at first birth are positively associated with PD and DA.  All these 
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relationships are not statistically significant however (p≥0.05), with the exception of BMI for 

PD (p<0.001). The non-significance for most coefficients is likely due to the small sample size 

(63 episodes from 45 participants).   

 

The film mammograms PD RE variance estimates are significant for the between person and 

within person variance intercepts, Table 8-8.  This implies that further covariates could be 

modelled to explain the variability both between and within each participant for PD. The within 

person correlation (rho) for PD was not significant, which is perhaps due to the small sample 

size which had few repeated measurements within the film mammogram subset of the data.  All 

the DA RE estimates are not significant, Table 8-8.  A standard error (SE) was not calculated 

for the between person variance for the DA intercept.  The DA between person RE variance is 

very small (0.0064), hence a SE may not have been possible to calculate (i.e. it exceeded the 

limits of the statistical program).  Although the non-significant variance estimate for the DA 

within person residual could mean that most of the within person variability has been explained 

by the model, the extremely wide 95% CI for the within person correlation belies this and 

suggests as per the film only PD model that insufficient data was present to correctly estimate a 

the variance-covariance structure for the within person residuals.   The exponential covariance 

structure provides an estimate of the correlation for the within person measurements (episodes), 

but a correlation cannot be calculated if insufficient repeated measurements are in the dataset. 

The default covariance structure (the independent structure, i.e. no correlation) would have 

better suited the DA film only Primary model.   

 

8.4.4.1.2 Digital mammogram only Primary Model 
 

The results for the PD and DA Primary models with digital mammograms only are shown in 

Table 8-11.  Four hundred and seventy-seven (477) mammographic episodes from all 120 

participants were included in the digital mammogram only data subset used to generate the 

models. Back transformed FE model outcomes for PD (in %) and DA (in mm2) are shown in 
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Table 8-12.  The back transformed values correspond to the average response for a 

representative CMN IBIS-II participant who was randomised at age 50, underwent menopause 

at age 50 with a BMI of 25 kg/m2.  Longitudinal change by treatment group for back 

transformed PD is shown in Figure 8-15. Back transformed values using the representative 

values of 20% PD and 2700mm2 DA are shown in Table 8-13. 

 

The intercept for the back transformed PD values is 21.4%, which is lower than the back 

transformed intercept for the film mammogram model (33%) and back transformed value of 

29% for the all mammograms Primary model, Table 8-6. Digital mammograms have lower PD 

on average than film mammograms in this dataset, which explains the difference in intercept 

between the digital only compared to the film only and all mammograms models. 

 

Whilst the baseline to year 1 and years 1 to 5 coefficients for annual change in PD and years 1 

to 5 coefficient for DA annual change in the control group were statistically significant 

(p<0.05), the interaction terms between anastrozole treatment and change over time were not 

significant. The interaction term for change in DA for anastrozole treated participants relative to 

control participants for years 1 to 5 (back transformed  value of –66mm2/year) had the lowest p 

value (p=0.14).  All other anastrozole and change over time interaction terms had p-values >0.2.   

 

Both the PD and DA interaction terms for baseline to year 1 were (non-significantly) positive, 

whilst both interaction terms for years 1 to 5 were (non-significantly) negative.  If anastrozole 

treatment truly is associated with a decrease over time relative to control treatment for the first 

and/or subsequent years of treatment, this effect appears to be masked by the instability of the 

MD measurements and/or representation of MD on the mammograms.  For instance, although 

the model accounts for the average difference between the different digital Versions, the 

increase in PD between a baseline KE52 mammogram and a higher MD KE54 mammogram at 

year 1 due to the change in mammogram Version may on average be higher than is accounted 
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Table 8‐11 Square root transformed Primary Model of PD and DA, digital mammograms only (477 episodes) 

  Square root transformed Percent Density  Square root transformed Dense Area  

 
DIGITAL MAMMOGRAMS ONLY

120 participants, 477 total episodes (follow ups)† 

Covariate  Coefficient (β)  SE  P  95% CI    Coefficient (β)  SE  P  95% CI   

Age at Randomisation (years)  ‐0.04  0.02  0.011  ‐0.07  ‐0.01  ‐0.37  0.25  0.13  ‐0.85   0.11 

BMI (kg/m2)  ‐0.12  0.02  <0.001  ‐0.15  ‐0.08  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Age at Menopause (years)  0.06  0.02  0.003  0.02   0.09   0.86  0.27  0.001  0.33   1.39 

Age First Birth, ≥30y vs <30y (ref)  1.2  0.40  0.003  0.39   1.94   21.9  6.67  0.001  8.86   35.0 

   Non‐parous vs <30y (ref)  0.08  0.27  0.77  ‐0.44   0.60   6.55  4.13  0.11  ‐1.54   14.6 

Mammogram Version, KE54 v KE52 (ref)  0.24  0.04  <0.001  0.16   0.32  ‐6.09  2.65  0.02  ‐11.3   ‐0.90 

   Fuji v KE52 (ref)  0.41  0.08  <0.001  0.26   0.57  ‐2.67  2.76  0.33  ‐8.08   2.74 

Anastrozole (no=ref)  ‐0.36  0.22  0.11  ‐0.79   0.08  ‐3.07  3.23  0.34  ‐9.40   3.27 

Intercept  4.6  0.29  <0.001  4.1   5.2  56.8  4.17  <0.001  48.7   65.0 

  Annual change in MD (All mammograms) 

Baseline to Year 1  ‐0.16  0.08  0.048  ‐0.32   0.00  ‐1.50  0.97  0.12  ‐3.41   0.40 

Years 1 to 5  0.08  0.03  0.002  0.03   0.14   1.35  0.38  <0.001  0.60   2.10 

Years 5 to 7  ‐0.02  0.07  0.80  ‐0.15   0.12   0.35  0.99  0.73  ‐1.60   2.29 

Anastrozole x Baseline to Year 1  0.09  0.10  0.35  ‐0.10   0.28   0.47  1.22  0.70  ‐1.93   2.87 

Anastrozole x Year 1 to Year 5  ‐0.04  0.03  0.23  ‐0.09   0.02  ‐0.58  0.39  0.14  ‐1.35   0.18 

Anastrozole x Year 5 to Year 7  0.02  0.12  0.85  ‐0.20   0.25  ‐0.31  1.61  0.85  ‐3.48   2.85 

  Random effects  – estimates for between‐ and within‐person change 

Between person  variance                   

Fuji mammograms  0.15  0.04  *  0.09   0.25  28.3  7.2  *  17.2   46.6 

Intercept  1.2  0.27  *  0.81   1.9  270.8  42.1  *  199.7   367.2 

Within person correlation (rho)  0.50  0.16  *  0.23   0.78  0.28  0.145  ns  0.08   0.61 

Within person variance  0.10  0.03  *  0.05   0.19  12.4  2.71  *  8.1   19.0 

P p‐value; x interaction; ns not significant; ref reference category; y years; * p<0.05 because the SE are ≤0.5 times the variance estimate 
† 120 par cipants contributed 477 episodes to this analysis (~4 episodes per par cipant) 
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Table 8‐12 Back transformed Primary Model of PD (%) and DA (mm2), digital mammograms only (477 episodes) 

  Back transformed Percent Density (%)  Back transformed Dense Area  (mm2) 

 
DIGITAL MAMMOGRAMS ONLY

120 participants 477 total episodes (follow ups) 

Covariate  Coefficient (β)  SE  P  95% CI    Coefficient (β)  SE  P  95% CI   

Age at Randomisation (years)  ‐0.38  0.15  0.011  ‐0.67  ‐0.09  ‐42.3  28.0  0.13  ‐96.4  12.3 

BMI (kg/m2)  ‐1.1  0.16  <0.001  ‐1.4  ‐0.76  ‐‐  ‐‐  ‐‐  ‐‐  ‐‐ 

Age at Menopause (years)  0.51  0.17  0.0030  0.17  0.86  98.6  30.5  0.001  38.1  160 

Age First Birth, ≥30y vs <30y (ref)  12.1  3.8  0.0030  3.7  21.7  2973  802  0.001  1085  5203 

   Non‐parous vs <30y (ref)  0.71  2.5  0.77  ‐3.9  5.9  788  486  0.11  ‐173  1879 

Mammogram Version, KE54 v KE52 (ref)  2.3  0.39  <0.001  1.5  3.1  ‐296  321  0.33  ‐853  319 

   Fuji v KE52 (ref)  4.0  0.73  <0.001  2.5  5.6  ‐118  334  0.71  ‐713  540 

Anastrozole (no=ref)  ‐3.2  2.1  0.11  ‐6.7  0.73  ‐339  378  0.34  ‐980  382 

Intercept  21.4  2.8  <0.001  16.5  27.0  3230  492  0.00  2367  4226 

  Annual change in MD (All mammograms) 

Baseline to Year 1  ‐1.5  0.76  0.048  ‐2.9  ‐0.01  ‐169  111  0.12  ‐376  46 

Years 1 to 5  0.8  0.25  0.0020  0.3  1.3  155  43.6  <0.001  68.6  243 

Years 5 to 7  ‐0.2  0.63  0.80  ‐1.4  1.1  39.4  114  0.73  ‐179  266 

Anastrozole x Baseline to Year 1  0.8  0.90  0.35  ‐0.9  2.7  53.2  141  0.70  ‐216  334 

Anastrozole x Year 1 to Year 5  ‐0.3  0.27  0.23  ‐0.9  0.2  ‐65.7  44.5  0.14  ‐151  21.0 

Anastrozole x Year 5 to Year 7  0.2  1.08  0.85  ‐1.8  2.4  ‐35.4  186  0.85  ‐383  332 

P p‐value; x interaction; ns not significant; ref reference category; y years; 
These back transformed values are representative for a participant randomised at age 50y, BMI of 25, menopause at age 50y, and AFB <30y 
† 120 par cipants contributed 477 episodes to this analysis (~4 episodes per par cipant) 
 

Table 8‐13 Anastrozole group MD change, back transformed Primary Model results,  digital mammograms only, 20% PD and DA 2700mm2 reference values 

Covariate 
Treatment group annual change in MD (Digital mammograms only) 

PD (%) , reference value 20% PD  DA mm2, reference value 2700mm2 (27cm2) 

Anastrozole x Baseline to Year 1  0.8%/year   48 mm2/year 

Anastrozole x Year 1 to Year 5  ‐0.3%/ year  ‐60 mm2/year 

Anastrozole x Year 5 to Year 7   0.2 %/year  ‐33 mm2/year 
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Figure 8‐15 Back transformed longitudinal PD by Treatment Group, digital only Primary Model 
The digital mammogram only estimated growth curves for the treated and control groups are almost 
parallel to each other, reflecting the small relative annual PD change for treatment vs control 

 

for by the model.  If so, any decreases in PD from anastrozole treatment will be masked due to 

the change in mammogram Version, and PD will appear to increase instead of decreasing.   

 

8.4.4.2 Full vs parsimonious Primary Model comparison 

The coefficients and SE for the Primary (square root transformed) PD and DA models are 

compared with Primary models with a full set of covariates in Table 8-14.  This comparison was 

undertaken to check for unexpected differences between the parsimonious and full set of 

covariates in the Primary models. The PD parsimonious coefficients were largely similar to 

their counterparts in the full model (±10%), except for the anastrozole treatment indicator which 

showed a 15% difference (Primary model coefficient –0.33 vs full model coefficient –0.38).  A 

few of the DA parsimonious coefficients changed more than 10%: age at randomisation 

(Primary –0.38 vs –0.57 Full), anastrozole treatment indicator (Primary –0.28 vs –0.48 Full), 
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and FE intercept (Primary 61.4 vs 74.8 Full), but all of the Primary model coefficients retained 

the same sign as their full model counterparts. 

 
Table 8‐14 Primary (parsimonious) models vs Full covariate models, PD and DA 

Covariate 

PD (square root)
Primary model 

PD (square root)
Full model 

DA (square root) 
Primary model 

DA (square root)
Full model 

Coef.(β) SE Coef.(β) SE Coef.(β) SE Coef.(β)  SE

ALL MAMMOGRAMS
120 participants 540 episodes (follow ups) 

Age at Rand. (yrs)  ‐0.04**  0.02 ‐0.05* 0.02 ‐0.38‡ 0.25  ‐0.57‡  0.31
BMI (kg/m2)  ‐0.12*** 0.02 ‐0.12*** 0.02 ‐‐ ‐‐ ‐0.36  0.28
Menarche (yrs)   ‐‐  ‐‐ 0.04 0.02 ‐‐ ‐‐  1.18‡  0.79
Menopause (yrs)   0.06**  0.02 0.06** 0.05 0.88*** 0.28   0.96**  0.28
AgeFirstBirth<30y   ref.  ref. ref. ref. ref. ref.  ref.  ref.
  ≥ 30 years   1.06**  0.33 1.02** 0.35 21.4*** 6.5  21.8***  5.9
  Non‐parous   0.03  0.29 0.03 0.30 6.3‡ 4.3  5.7  4.8
OC use ‐ Never   ‐‐  ‐‐ ref. ref. ‐‐ ‐‐  ref.  ref.
  Ever users   ‐‐  ‐‐ ‐0.28 0.37 ‐‐ ‐‐ ‐5.0  6.0
HRT – Never   ‐‐  ‐‐ ref. ref. ‐‐ ‐‐  ref.  ref.
  Ever users   ‐‐  ‐‐ 0.02 0.23 ‐‐ ‐‐ ‐0.93  3.3
Smoking‐ never   ‐‐  ‐‐ ref. ref. ‐‐ ‐‐  ref.  ref.
  Current   ‐‐  ‐‐ 0.34 0.29 ‐‐ ‐‐  9.0**  3.3
  Ex‐smoker   ‐‐  ‐‐ 0.10 0.22 ‐‐ ‐‐  0.24  3.4
IBIS‐1 – No   ‐‐  ‐‐ ref. ref. ‐‐ ‐‐  ref.  ref.
  Yes   ‐‐  ‐‐ 0.23 0.26 ‐‐ ‐‐  3.1  3.7
Mammogram 
Version‐ film 

 ref.  ref.   ref.  ref.   ref.  ref.   ref.  ref. 

  KE52  ‐0.76*** 0.12 ‐0.76*** 0.12 ‐10.3*** 1.5 ‐10.3***  1.5
  KE54  ‐0.48*** 0.13 ‐0.48*** 0.13 ‐6.5*** 1.8 ‐6.5***  1.7
  Fuji  ‐0.29

‡
  0.15 ‐0.28

‡
0.15 ‐4.6* 2.2 ‐4.5*  2.1

Anas. (no=ref)  ‐0.33‡  0.22 ‐0.38‡ 0.22 ‐2.8 3.3 ‐4.8‡  3.3
Intercept    5.42*** 0.30  5.86*** 0.90 61.4*** 4.0  74.8***  14.3

Annual change in MD (All mammograms)

Baseline to Year 1  ‐0.14*  0.07 ‐0.14* 0.07 ‐1.5‡ 0.83  ‐1.5‡  0.8
Years 1 to 5  0.05*  0.03 0.05* 0.03 1.0** 0.37   1.0**  0.37
Years 5 to 7 ‐0.02  0.07 ‐0.02 0.07 0.30 1.0  0.3  1.0
Anas. x Baseline‐
Year 1 

 0.02  0.08   0.02  0.08  ‐0.17  1.1  ‐0.14  1.1 

Anas. x Year 1—
Year 5 

‐0.02  0.03  ‐0.02  0.03  ‐0.39  0.3  ‐0.38  0.35 

Anas. x Year 5—
Year 7 

 0.01  0.12   0.01  0.12  ‐0.48  1.6  ‐0.48  1.6 

Random effects  – estimates for between‐ and within‐person change 

Between person  variance   
Film mmgs   0.29*  0.09 0.29* 0.09 50.2* 13.7  49.6*  13.4
Fuji mmgs   0.15*  0.04 0.15* 0.04 27.9* 7.0 28.0*  7.0
Intercept   1.24*  0.26 1.21* 0.28 274.1* 41.9  253.4*  45.9
Within person 
correlation (rho) 

 0.47*  0.14  0.47*   0.14   0.25*  0.11  0.25*  0.11 

Within person 
variance 

 0.09*  0.03  0.09*  0.03   12.3*  2.2  12.3*  2.2 

Coef. coefficient; ref. reference category;  Anas. anastrozole treatment; y yrs years; mmg mammograms; 
* p<0.05; ** p<0.01; *** p<0.001; ‡ p≤0.15; 
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8.4.4.3 Change points from 1.25 to 2.0 years 

Increasing the PD Primary cut point (knot) in 0.25 year increments from 1.0 to 2.0 years 

revealed a trend toward an easing in decrease of annual change in PD for control treated 

participants for the first segment of the continuous spline, Table 8-15.  A similar trend was 

noted during modelling of the aggregate (treated + control) data (Aim 4, Chapter 7), and was 

part of the rationale for selecting the cut point of 1.0 year for the first segment of time.  This is 

because the easing of PD rate of change with increasing time to the first cut point may have 

indicated a substantial change in the aggregate (treated + control) growth curve was missed by 

increasing the time at which the spline first was allowed to bend.  Maximising the annual rate of 

decline for the aggregate longitudinal model at 1.0 years also appeared to suit the maximum 

theoretical change in MD expected for anastrozole treated participants. However, in Table 8-15, 

relative annual change for the treated group for the first time segment is the most negative, 

albeit non-significantly, for the cut point at 2.0 years.  

 

It is not clear why treated participants in the film only Primary model show a clear decrease in 

relative PD and DA annual change relative to the control group from baseline to year one, yet 

the all mammogram and digital only models do not.   Potentially, the pattern in relative PD 

annual change between the treated and control groups with the different cut points in Table 8-15 

may hint that the cut points for the model may be incorrectly positioned.   In theory, the growth 

curve for the control group should show a consistent decline of about –1% per year from 

baseline to year 7.  However results from each cut point show a decline in annual PD rate of 

change for the first time segment, an increase during the second time segment, and a decline for 

years 5 to 7.  With the exception of the decline between years 5 to 7, this is a pattern similar to 

the unconditional growth model of categorical time, which had a local minimum at 2.0 years 

(Table 7-5, Chapter 7).  The pattern also matches the PD change over time pattern of the 

aggregate model fitted with categorical time (not tabulated).  The pattern is caused by 

participants transitioning from baseline film to subsequent digital mammograms (which 
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Table 8‐15 PD Primary model (1.0 year cut point) compared with cut points at 1.25, 1.5, 1.75 & 2 years 

Covariate 

PD Primary 
Model (ref) 

PD 1.25 year
cut point 

PD 1.5 year
cut point 

PD 1.75 year 
cut point 

PD 2.0 year
cut point 

Coef  SE Coef SE Coef SE Coef SE  Coef SE

ALL MAMMOGRAMS1

120 participants, 540 episodes 

Age at Rand (y)  ‐0.04  0.02 ‐0.04 0.02 ‐0.04 0.02 ‐0.04 0.02  ‐0.04 0.02
BMI (kg/m

2
)  ‐0.12  0.02 ‐0.12 0.02 ‐0.12 0.02 ‐0.12 0.02  ‐0.12 0.02

Menopause (y)   0.06  0.02 0.06 0.02 0.06 0.02 0.06 0.02   0.06 0.02
AFB ≥30y v 
<30y (ref) 

 1.06  0.33   1.06  0.33   1.06  0.33   1.06  0.33   1.06  0.34 

  Non‐parous   0.03  0.29 0.03 0.29 0.03 0.29 0.04 0.29   0.04 0.29
Mmg Version 
KE52 v Film(ref)  

‐0.76  0.12  ‐0.76  0.12  ‐0.76  0.12  ‐0.77  0.12  ‐0.78  0.12 

  KE54  ‐0.48  0.13 ‐0.48 0.13 ‐0.49 0.13 ‐0.49 0.13  ‐0.50 0.13
  Fuji  ‐0.29  0.15 ‐0.28 0.15 ‐0.29 0.15 ‐0.29 0.15  ‐0.30 0.15
Anas. (no=ref)  ‐0.33  0.22 ‐0.33 0.22 ‐0.33 0.22 ‐0.32 0.22  ‐0.32 0.22
Intercept    5.4  0.30 5.4 0.30 5.4 0.30 5.4 0.30   5.4  0.30

Annual change in PD (All mammograms)2

Baseline to  
Cut point 

‐0.14*  0.07  ‐0.11‡  0.06  ‐0.09‡  0.05  ‐0.06  0.04  ‐0.04  0.04 

Cut point to 5y   0.05*  0.03 0.06* 0.03 0.06* 0.03 0.05‡  0.03   0.05‡ 0.03
Years 5 to 7 ‐0.02  0.07 ‐0.02 0.07 ‐0.02 0.07 ‐0.02 0.07  ‐0.02 0.07
Anastrozole x  
Baseline–Cutpt. 

 0.02  0.08    0.01  0.07    0.01  0.06  ‐0.002  0.06  ‐0.01  0.05 

Anastrozole x   
Cutpt. to Year 5 

‐0.02  0.03  ‐0.02  0.03  ‐0.02  0.03  ‐0.01  0.03  ‐0.01  0.03 

Anastrozole x  
Year 5 to Year 7 

 0.01  0.12    0.01  0.12    0.01  0.12   0.01  0.12   0.01  0.12 

y yr year; Coef. coefficient; ref. reference category; SE standard error; Pts participants; eps episodes; 
AFB age at first birth;  Cutpt. cut point; x interaction term; mmg mammogram/s; 
1 p‐values for Age at randomisation, BMI, Menopause, AFB, mammogram Version, anastrozole and the 
intercept are similar for all models (i.e. are identical or very similar to  the p‐values for the PD Primary all 
mammogram model). 
2 p‐values as marked: * p<0.05; ‡ p≤0.15; 

 

contributes to the drop from baseline to year 1) as well as the intra-digital Version transition, re: 

Figure 7-7, Chapter 7.  The cut point at 1.0 year does appear to suit the growth curve of the 

control group for this particular model (with all participants and episodes), because the growth 

curve of the control group is unaffected by a treatment effect and should resemble that of the 

aggregate model because the expected change in PD due to anastrozole treatment is small. 

 

However, the aggregate (treated + control) model average PD at each time point is highly 

dependent upon the Version/s of mammogram included in the model, Figure 8-16, as well 

which participants have data at each time point, e.g. the PD lowess plots Figure 8-1 and Figure 

8-2.   The PD trajectories (growth curves) in Figure 8-16 reveal the varying effects 
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Figure 8‐16 Square root transformed PD aggregate growth curves, different first year Version groups 
G Group; Models with film mammograms have dashed lines, models with digital mammograms only are 
graphed as solid lines; an ‘ideal’ control group trajectory is represented by a line of black dots.  
The participants are grouped by Version of mammogram present from baseline to year 1 (Table 8‐1):  
G1 Film only; G2 Film, KE52 or KE54 only; G3 Film to digital only; G4 (G2 + G3); G5 (G1 + G3); G6 Intra‐
digital transition only; G7 KE52 or KE54 only (G2 – G1); G8 All known digital Versions (G6 + G7); G9 All 
digital, includes 3 episodes of unknown Version (G8 + unknown Version); Ideal ‘ideal’ control group 
trajectory –0.5% PD/year (untransformed PD) 

 
 

 
different mammogram Versions have on PD change in the first year (baseline to year 1).  The 

greatest PD decline during the first year is seen for participants who transitioned from film to a 

digital Version (G2, green dashed line); the next largest PD decline during the first year resulted 

from participants who transitioned from one digital Version to another digital Version in the 

first year (solid green line).  The group of participants with a PD growth trajectory which most 

closely mirrors the ‘ideal control group’ trajectory have the same within-person mammogram 

Version during the first year (G2, blue dashed line). 
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8.4.4.4 Participants with known age at menopause only; parous participants only 

Coefficients for the PD Primary model fitted for women with known age at menopause only, 

Table 8-16, are similar to the coefficients for the Primary Model fitted for all participants, Table 

8-5 and Table 8-16.  All subgroup coefficients are within ± 1 SE of the Primary model 

coefficients, except the intercept which has changed because age at menopause was not centred 

in the participants with known age at menopause only model.  Use of an imputed age at 

menopause for the 27 participants does not appear to have greatly affected the PD Primary 

model outcomes. 

 
 
Parous participants only 

Coefficients for the PD Primary model fitted for parous women only, Table 8-16, are similar to 

the coefficients for the Primary Model fitted for all participants, Table 8-5.  With the exception 

of the parameter which had been redefined for the subgroup model (age at first birth is now a 

continuous not categorical parameter), the other coefficients are within ± 1 SE of the Primary 

model coefficients.  Parous age was modelled as a continuous parameter, and was not centred so 

both the age at first birth and intercept differ for the subgroup model with parous women only in 

Table 8-16.   
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Table 8‐16 PD Primary model sensitivity and subgroup analysis, All mammograms (film + digital) 

Covariate 

PD Primary Model 
(ref) 

PD, known age at 
menopause 

PD, parous only 
PD, participants 
<=60 years only 

PD, participants 
>60 years only 

PD, “per protocol” 
treatment 

Coef.(β)  SE  Coef.(β) SE Coef.(β) SE Coef.(β)  SE  Coef.(β) SE Coef.(β) SE

# Pts, # episodes  120 pts, 540 eps  93 pts, 424 eps  112 pts, 509 eps  47 pts, 214 eps  73 pts, 326 eps  117 pts, 447 eps 

Age at Rand. (years)  ‐0.04**  0.02  ‐0.03‡ 0.02 ‐0.05* 0.02 ‐0.06 0.04  ‐0.05 0.04 ‐0.05** 0.02
BMI (kg/m2)  ‐0.12***  0.02  ‐0.12*** 0.02 ‐0.11*** 0.02 ‐0.10***  0.02  ‐0.14*** 0.03 ‐0.12*** 0.02
Menopause (years)   0.06**  0.02  0.081*** 0.02 0.05* 0.02 0.08** 0.02  0.05* 0.02 0.06** 0.02
Age First Birth,  
≥30y vs <30y (ref) 

 1.06**  0.33  0.75* 0.31 0.022 0.03 1.45** 0.47  0.48‡ 0.31 1.06** 0.33

   Non‐parous vs <30y (ref)   0.03  0.29  0.05 0.31 ‐‐ ‐‐ 0.68* 0.29  ‐0.41 0.48 0.07 0.32
Mammogram Version, 
KE52 v Film(ref) 

‐0.76***  0.12  ‐0.83***  0.14  ‐0.83***  0.11  ‐0.93***  0.15  ‐0.73***  0.15  ‐0.73***  0.12 

    KE54 v Film (ref)  ‐0.48***  0.13  ‐0.54*** 0.15 ‐0.59*** 0.12 ‐0.60***  0.15  ‐0.49** 0.17 ‐0.42** 0.14
    Fuji v Film (ref)  ‐0.29‡  0.15  ‐0.32‡ 0.17 ‐0.42* 0.14 ‐0.49** 0.18  ‐0.27 0.20 ‐0.17 0.16
Anas. (no=ref)  ‐0.33‡  0.22  ‐0.28 0.25 ‐0.28 0.23 ‐0.23 0.29  ‐0.48‡ 0.31 ‐0.35‡ 0.23
Intercept   5.42***  0.30  1.6‡ 0.93 5.1*** 0.71  5.4***  0.34  5.7*** 0.68 5.4*** 0.31

Annual change in PD (All mammograms)

Baseline to Year 1  ‐0.14*  0.07  ‐0.10‡ 0.06 ‐0.13‡ 0.07 ‐0.11 0.08  ‐0.15‡ 0.10 ‐0.16* 0.07
Years 1 to 5   0.05*  0.03  0.04‡ 0.03 0.07** 0.03 0.04 0.03  0.07* 0.04 0.06‡ 0.03
Years 5 to 7  ‐0.02  0.07  ‐0.08 0.07 ‐0.01 0.07 ‐0.03 0.09  0.04 0.11 ‐‐ ‐‐
Anas. x Baseline to Year 1   0.02  0.08  0.00 0.09 0.00 0.08 ‐0.153 0.10  0.17‡ 0.11 0.03 0.08
Anas. x Year 1 to Year 5  ‐0.02  0.03  ‐0.01 0.03 ‐0.02 0.03 0.01 0.04  ‐0.04 0.03 ‐0.03 0.03
Anas. x Year 5 to Year 7   0.01  0.12  0.07 0.12 ‐0.01 0.12 0.06 0.16  ‐0.07 0.17 ‐‐ ‐‐

Coef. coefficient; ref. reference category; SE standard error; Pts participants; eps episodes; y years; AFB age at first birth;  Anas. anastrozole treatment;  
x interaction term; 
* p<0.05; ** p<0.01; *** p<0.001; ‡ p≤0.15; 1 Menopause age is not centred 
2 Parous age is a continuous variable (not centred) 
3 p‐value 0.154 
4 p‐value 0.172
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8.4.4.5 Participants ≤60 vs >60 years at randomisation; ‘per protocol analysis’ 

Analysis of the Primary model by age at randomisation (≤60 y vs >60y) produced models with 

fairly similar results.  Most coefficients were within ± 1 SE of the Primary model coefficients; 

all were within ± 2 SE.  The most affected coefficients were for a variable which had a category 

with small cell sizes— age at first birth.   The coefficients for mammogram Version were also 

more affected than most other parameters, which may be a reflection of the smaller sample size 

for women ≤ 60 year at randomisation.  

 

PD change over time during the first year of treatment for the anastrozole group relative to the 

control group for the subgroup of younger participants at randomisation was non-significant but 

decreasing (–0.15, p=0.154) whilst annual PD change for their older counterparts showed an 

non-significant annual increase (0.17, p<0.15).   The remaining anastrozole interaction terms 

(years 1 to 5, and years 5 to 7) did not show as marked differences between the different age 

sub-groups. Age may impact on first year PD response to anastrozole treatment; however this 

study did not have adequate sample size or statistical power to investigate this further. 

 

Censored at cease of treatment: “per protocol analysis” 

Restricting the PD Primary model to only ‘on treatment’ episodes (prior to year 6) did not 

greatly affect the model coefficients compared to the PD model with all episodes, Table 8-16.  

In particular, the growth coefficients (including the anastrozole treatment interaction terms) 

were nearly identical.   

 

8.4.4.6 Mixed model vs GEE model; Default SE vs robust SE 

The FE coefficients are fairly similar for the PD Primary model, PD Primary model with 

autoregressive (AR) covariance structure, and PD fitted as a GEE model with an AR covariance 

structure, Table 8-17.  As expected, the FE coefficients are nearly identical for the PD Primary 

AR and PD GEE AR model, because GEE models for continuous outcomes are effectively 
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identical to their (mixed) linear regression counterparts.  Some FE coefficients differ between 

the two PD AR models and the (exponential covariance structure) PD Primary model due to 

differences in the number of participants included in the models; this likely accounts for the >1 

SE (but < 2 SE) difference in coefficients for the age at first birth categorical covariate.  It may 

also explain the decrease in size for the (ns) anastrozole treatment covariate (–0.33 for all 120 

participants to about –0.05 in the two AR models).   

 

The PD Primary and two AR PD models produced similar estimates for the RE between person 

variance intercept and within person variability (± 1SE). The within person correlation (rho) 

estimates were also similar, as was the Fuji mammogram RE slope estimate.  The film 

mammogram slope estimate differed the most between the PD Primary covariance structures.  

This was likely due to the fewer number of film episodes in the AR data set (n=14) compared to 

the Primary model dataset (n=63 film episodes).  Given that none of the PD Primary model 

coefficients differed by more than 2 SE compared to the PD AR and GEE AR model 

coefficients, and the more stable (larger cell size) covariate coefficients were <1 SE apart, the 

selected modelling approach (mixed model with an exponential covariance structure) appears 

appropriate. 

 

Default SE vs robust SE 

There was no consistent pattern for the SE of the PD and DA Primary models with the default 

(original information matrix, OIM) vs the robust SE utilised in the PD and DA Primary models, 

Table 8-17. The default SE are sometimes smaller, sometimes identical, and also sometimes 

larger than the corresponding robust SE. Growth parameters which were significant with the 

default SE are generally still significant with robust SE, and use of either SE does not alter 

interpretation of the model.   
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Table 8‐17 PD Primary model , PD Primary model and GEE model with AR1 covariance structure, DA Primary model, and PD and DA Primary models with default SE 

Covariate 

PD Primary  
Model (ref) 

PD Primary, 
AR1 covariance 

PD, GEE model
AR1 covariance 

PD Primary,  
default SE  

DA Primary 
Model (ref) 

DA Primary, 
default SE 

Coef.(β)  SE  Coef.(β)  SE  Coef.(β)  SE  Coef.(β) 
Default 
SE 

Coef.(β)  SE  Coef.(β) 
Default 
SE 

# Pts, # episodes  120 pts, 540 eps  72 pts, 310 eps  72 pts, 310 eps  120 pts, 540 eps 120 pts, 540 eps 120 pts, 540 eps

Age at Randomisation (years)  ‐0.04**  0.02 ‐0.05* 0.02 ‐0.05* 0.02 ‐0.04*  0.02 ‐0.38‡ 0.25 ‐0.38 0.28
BMI (kg/m2)  ‐0.12***  0.02 ‐0.10*** 0.02 ‐0.11*** 0.02 ‐0.12***  0.02 ‐‐ ‐‐ ‐‐ ‐‐
Menopause (years)   0.06**  0.02 0.07** 0.02 0.07** 0.02 0.06**  0.02 0.88** 0.28 0.88** 0.28
Age First Birth, ≥30y v <30y (ref)   1.06**  0.33 0.59‡ 0.33 0.68* 0.31 1.06**  0.46 21.4** 6.5 21.4** 6.8
   Non‐parous vs <30y (ref)   0.03  0.29 0.11 0.31 0.12 0.31 0.03 0.43 6.3‡ 4.3 6.3 6.3
Mammogram Version,  
    KE52 v Film (ref)  ‐0.76***  0.12  ‐0.73***  0.14  ‐0.69***  0.15  ‐0.76***  0.10  ‐10.3***  1.5  ‐10.3***  1.3 
    KE54 v Film (ref)  ‐0.48***  0.13 ‐0.45** 0.14 ‐0.41** 0.15 ‐0.48***  0.11 ‐6.5*** 1.8 ‐6.5*** 1.5
    Fuji v Film (ref)  ‐0.29‡  0.15 ‐0.22 0.16 ‐0.17 0.18 ‐0.29*  0.14 ‐4.6* 2.2 ‐4.6** 1.9
Anastrozole Tx (no=ref)  ‐0.33‡  0.22 ‐0.04 0.29 ‐0.08 0.30 ‐0.33‡  0.22 ‐2.8 3.3 ‐2.8 3.2
Intercept   5.42***  0.30 5.4*** 0.44 5.4*** 0.44 5.4***  0.32 61.4*** 4.0 61.4*** 4.1

Annual change in PD (All mammograms)

Baseline to Year 1  ‐0.14*  0.07 ‐0.11‡1 0.07 ‐0.15‡1 0.08 ‐0.14*  0.06 ‐1.5‡ 0.83 ‐1.5‡ 0.77
Years 1 to 5   0.05*  0.03 0.08* 0.03 0.07* 0.03 0.05‡  0.03 1.0** 0.37 1.0* 0.40
Years 5 to 7  ‐0.02  0.07 ‐0.10* 0.05 ‐0.08‡ 0.04 ‐0.02  0.07 0.30 1.02 0.30 0.99
Anastrozole x Baseline to Year 1   0.02  0.08 0.01 0.09 0.06 0.09 0.02 0.07 ‐0.17 1.07 ‐0.17 0.96
Anastrozole x Year 1 to Year 5  ‐0.02  0.03 ‐0.03 0.03 ‐0.02 0.04 ‐0.02  0.03 ‐0.39 0.35 ‐0.39 0.43
Anastrozole x Year 5 to Year 7   0.01  0.12 0.13 0.14 0.13 0.12 0.01 0.10 ‐0.48 1.64 ‐0.48 1.37

Random effects  – estimates for between‐ and within‐person change

Between person  variance       
Film mammograms   0.29*  0.09 0.06 0.08 ‐‐ ‐‐ 0.29*  0.09 50.2* 13.7 50.2* 14.6
Fuji mammograms   0.15*  0.04 0.11* 0.04 ‐‐ ‐‐ 0.15*  0.03 27.9* 7.0 27.9* 5.9
Intercept   1.2*  0.26 1.2* 0.36 ‐‐ ‐‐ 1.2* 0.17 274* 42 274* 37

Within person correlation (rho)   0.47*  0.14 0.57* 0.13 ‐‐ ‐‐ 0.47*  0.11 0.25* 0.11 0.25* 0.11
Within person variance   0.09*  0.03 0.12* 0.04 ‐‐ ‐‐ 0.09*  0.02 12.3* 2.2 12.3* 1.9

Coef. coefficient; ref. reference category; SE standard error; Pts participants; eps episodes; y years; Tx treatment; x interaction term; 
* p<0.05; ** p<0.01; *** p<0.001; ‡ p≤0.15;  
1 Baseline to Year 1 p‐value for PD AR1 model is 0.14, p‐value for corresponding GEE coefficient is 0.055; 
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8.4.4.7  Treatment group RE assessment 

The RE term for anastrozole (a RE slope for anastrozole treatment) is non-significant when 

added to the Primary models of PD and DA (i.e. the estimate for the anastrozole RE slope 

variance is not greater than two times its SE), Table 8-18.  

 

Modelling of a separate covariance structure for each treatment group was enabled by adding a 

term for treatment group to the covariance structure specification, Table 8-18.  Treatment group 

may be an effect modifier for within-person correlation (rho) for both PD and DA— the control 

group had a higher within person correlation than the aggregate correlation (rho) of the Primary 

models, and the within person aggregate correlation in the Primary models was higher than the 

correlation of the anastrozole treated group.  Because of the overlap of the within person 

correlation covariance estimates (<1 SE apart), the within person correlations by treatment 

group are unlikely to be significantly different.  

 

The lower within-person correlation (rho) for the treated group corresponded to a higher within-

person variance estimate compared to the aggregate within person variance estimate of the 

Primary PD and DA models.  This seemed appropriate, as higher within person variability is 

likely to be associated with a lower within person correlation.  The differences in estimated 

within person variance between the treatment groups approached > 2SE, so the variance 

estimates for the two treatment groups may significantly differ.   

 

In a future analysis, to reduce the potential impact of the non-significant RE anastrozole 

intercept on the reported changes in within person correlation and variance by treatment group, 

the PD and DA Primary models could be re-fitted without the anastrozole treatment RE term.  

The resulting by treatment group within person correlation and variance estimates could then be 

compared to those tabulated in Table 8-18. 
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Table 8‐18 PD and DA Primary models ± RE for treatment group ± by treatment group RE covariance residual structure (All mammograms, all 540 episodes) 

Covariate 

PD Primary 
Model (ref) 

PD Primary +
RE anastrozole Tx 

PD + RE anastrozole 
+ by group cov. 

DA Primary 
Model (ref) 

DA Primary  +
RE anastrozole Tx 

DA + RE anastrozole 
+ by Tx group cov. 

Coef.(β) SE Coef.(β) SE Coef.(β) SE Coef.(β) SE Coef.(β) SE Coef.(β) SE

Age at Randomisation (years)  ‐0.04**  0.02 ‐0.04* 0.02 ‐0.04* 0.02 ‐0.38‡  0.25 ‐0.37‡ 0.25 ‐0.39‡ 0.24
BMI (kg/m2)  ‐0.12*** 0.02 ‐0.11*** 0.02 ‐0.11*** 0.02 ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
Menopause (years)   0.06**  0.02 0.06** 0.02 0.06** 0.02  0.88**  0.28 0.89** 0.28 1.01*** 0.24
Age First Birth, ≥30y vs <30y (ref)   1.06**  0.33 1.12** 0.37 1.11** 0.37  21.4**  6.5 21.7** 6.6 21.6** 6.5
   Non‐parous vs <30y (ref)   0.03  0.29 0.08 0.28 0.08 0.28  6.3‡  4.3 6.2‡ 4.3 6.5‡ 3.7
Mammogram Version, KE52 v Film(ref)  ‐0.76*** 0.12 ‐0.76*** 0.12 ‐0.82*** 0.12 ‐10.3*** 1.5 ‐10.3*** 1.5 ‐11.0*** 1.5
    KE54 v Film (ref)  ‐0.48*** 0.13 ‐0.48*** 0.13 ‐0.55*** 0.13 ‐6.5***  1.8 ‐6.6*** 1.8 ‐7.3*** 1.7
    Fuji v Film (ref)  ‐0.29‡  0.15 ‐0.28‡ 0.15 ‐0.38** 0.15 ‐4.6*  2.2 ‐4.6* 2.2 ‐5.7** 2.1
Anastrozole Tx (no=ref)  ‐0.33‡  0.22 ‐0.33‡ 0.22 ‐0.32‡ 0.22 ‐2.8  3.3 ‐2.8 3.3 ‐2.9 3.2
Intercept   5.4***  0.30 5.3*** 0.29 5.4*** 0.29  61.4*** 4.0 61*** 4.0 62.1*** 4.0

Annual change in PD (All mammograms) 

Baseline to Year 1  ‐0.14*  0.07 ‐0.14* 0.06 ‐0.12‡ 0.06 ‐1.5‡  0.83 ‐1.5‡ 0.82 ‐1.2‡ 0.81
Years 1 to 5   0.05*  0.03 0.05* 0.03 0.06* 0.03  1.0**  0.37 1.0** 0.37 1.2* 0.38
Years 5 to 7  ‐0.02  0.07 ‐0.02 0.07 ‐0.01 0.07  0.30  1.02 0.30 1.0 0.42 0.93
Anastrozole x Baseline to Year 1   0.02  0.08 0.02 0.08 0.01 0.08 ‐0.17  1.07 ‐0.17 1.1 ‐0.30 1.1
Anastrozole x Year 1 to Year 5  ‐0.02  0.03 ‐0.02 0.03 ‐0.01 0.03 ‐0.39  0.35 ‐0.38 0.35 ‐0.37 0.35
Anastrozole x Year 5 to Year 7   0.01  0.12 0.01 0.12 0.00 0.11 ‐0.48  1.64 ‐0.48 1.6 ‐0.57 1.6

Random effects  – estimates for between‐ and within‐person change

Between person  variance     
Film mammograms   0.29*  0.09 0.29* 0.09 0.31* 0.08  50.2*  13.7 50.2* 13.7 52.6* 13.2
Fuji mammograms   0.15*  0.04 0.15* 0.04 0.15* 0.04  27.9*  7.0 27.9* 7.0 28.1* 6.8
Anastrozole treatment  ‐‐  ‐‐ 0.54 0.54 0.53 0.54 ‐‐  ‐‐ 48.9 101.3 51.2 79.2
Intercept   1.2*  0.26 0.96* 0.21 0.97* 0.20  274*  42 247* 42 243* 38

Within person correlation (rho)1   0.47*  0.14 0.47* 0.13 0.49* 0.23  0.25*  0.11 0.25* 0.11 0.27 0.22
Within person variance1   0.09*  0.03 0.09* 0.03 0.07* 0.03  12.3*  2.2 12.3* 2.2 9.7* 2.7
Within person correlation (rho) Tx2  ‐‐  ‐‐ ‐‐ ‐‐ 0.42* 0.16 ‐‐  ‐‐ ‐‐ ‐‐ 0.21 0.12
Within person variance, Tx2  ‐‐  ‐‐ ‐‐ ‐‐ 0.11* 0.03 ‐‐  ‐‐ ‐‐ ‐‐ 14.2* 3.0

Coef. coefficient; ref. reference category; SE standard error; Pts participants; eps episodes; y years; Tx treatment group; cov covariance residual structure;  
x interaction term;  * p<0.05; ** p<0.01; *** p<0.001; ‡ p≤0.15; 1without the by Tx group covariance term in model = aggregate group estimate, else is by treatment group 
covariance estimate for the control group; 2 By treatment group covariance estimate for the anastrozole group
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8.4.5 Change in RE Variability, MD growth as model complexity increases 
 

This section reviews the changes in the random effects variability as the mixed model increases 

in complexity.  The effect of increasing model complexity on the MD growth parameters is also 

assessed.   

 

Addition of terms for time to the model (i.e. to the unconditional growth model (model 2) and 

unconditional aggregate growth (model 3)) decreased within person variability relative to the 

unconditional means model (model 1), Table 8-19.  Incorporation of FE terms for BC risk 

covariates— age at randomisation, age at menopause, age at first birth (and BMI for PD)—

decreased between person variability in the parsimonious aggregate model (model 4) compared 

to model 3.  The FE covariates in model 4 did not markedly change mean annual MD change 

over time nor the associated SE compared to MD change over time for (the unconditional but 

otherwise similar) model 3. Inclusion of terms for anastrozole treatment and the anastrozole 

interaction (the latter terms are not shown in the table) to the Primary model (model 5) induced 

little change in RE variability (<±3%) or MD change over time compared to model 4 with the 

exception of an approximate doubling of the SE for baseline to year 1 annual MD change for 

model 5 (Primary model) compared to model 4. The remainder of this section reviews the 

changes in RE variability and MD change over time between the models listed in Table 8-19 in 

more detail.   

 

Within person variability 

As described in Singer and Willet [490], covariates which change over time reduce intra-person 

(within person) variability.  Thus due to the addition of time as a covariate, the reductions in 

within person variability for PD and DA were expected between the unconditional means model 

(model 1, least complex model) and the unconditional growth model (model 2, low complexity), 

as well as the unconditional growth model (model 2) and unconditional aggregate growth model 

(model 3, intermediate complexity), Table 8-19.  PD within person variability declines by 33%
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Table 8‐19 Annual change in MD and RE variance comparisons, All mammograms models (540 episodes), in order of increasing complexity 

Covariate 

1.  Unconditional 
 Means (Ch 7) 

Unconditional
Growth (Ch 7) 

3.  Unconditional  
Aggregate Growth (new) 

4. Parsimonious 
Aggregate (Ch 7) 

5.  Primary Model 
Treated vs Control 

Estimate   SE  Change1 Estimate SE Change1 Estimate SE Change1  Estimate SE Change1 Estimate SE Change1

 Square root PD annual change over time (interaction terms not shown for Primary model (model 5)

Annual change   ‐‐   ‐‐    0.05* 0.02 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
Baseline to Year 1   ‐‐   ‐‐    ‐‐ ‐‐ ‐0.12** 0.04 ‐0.13** 0.04 ‐0.14* 0.07
Years 1 to 5   ‐‐   ‐‐    ‐‐ ‐‐ 0.05* 0.02 0.04‡ 0.02 0.05* 0.03
Years 5 to 7   ‐‐   ‐‐    ‐‐ ‐‐ ‐0.02 0.06 ‐0.02 0.06 ‐0.02 0.07

Random effects  – estimates for between‐ and within‐person change

Between person variance
2
   2.0      2.32 +16% 2.35 +1%  1.71 ‐27% 1.68 ‐2%

Time (years)   ‐‐   ‐‐    0.02* 0.005 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
Film mammograms   ‐‐   ‐‐    ‐‐ ‐‐ 0.30* 0.08 0.29* 0.08 0.29* 0.09
Fuji mammograms   ‐‐   ‐‐    ‐‐ ‐‐ 0.15* 0.04 0.15* 0.04 0.15* 0.04
Intercept   2.0*  0.27    2.3* 0.31 +15% 1.90* 0.29 ‐17%  1.27* 0.25 ‐33% 1.24* 0.26 ‐2%

Within person corr (rho)   ‐‐   ‐‐    ‐‐ ‐‐ 0.46* 0.13 0.47* 0.13 0.47* 0.14
Within person variance   0.24*  0.02    0.16* 0.01 ‐33% 0.09* 0.03 ‐44%  0.09* 0.03 0% 0.09* 0.03 0%

Square root DA annual change over time (interaction terms not shown for Primary model (model 5)

Annual change   ‐‐   ‐‐    0.64** 0.23 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
Baseline to Year 1   ‐‐   ‐‐    ‐‐ ‐‐ ‐1.56** 0.54 ‐1.57** 0.54 ‐1.48‡ 0.83
Years 1 to 5   ‐‐   ‐‐    ‐‐ ‐‐ 0.85* 0.34 0.81* 0.34 1.01** 0.37
Years 5 to 7   ‐‐   ‐‐    ‐‐ ‐‐ 0.07 0.84 0.05 0.84 0.30 1.02

Random effects  – estimates for between‐ and within‐person change

Between person variance2  357      420.2 +18% 418.6 ‐0.4%  353.7 ‐16% 352.1 ‐0.5%
Time (years)   ‐‐   ‐‐    3.2* 0.77 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
Film mammograms   ‐‐   ‐‐    ‐‐ ‐‐ 49.6* 12.8 49.7* 12.9 50.2* 13.7
Fuji mammograms   ‐‐   ‐‐    ‐‐ ‐‐ 27.0* 6.7 27.0* 6.8 27.9* 7.0
Intercept   357*  47    417* 57 +17% 342* 44.8 ‐18%  277* 39.9 ‐19% 274* 42 ‐1%

Within person corr (rho)   ‐‐   ‐‐    ‐‐ ‐‐ 0.24* 0.11 0.25* 0.11 0.25* 0.11
Within person variance   39*  2.7    27* 2.1 ‐31% 12.3* 2.2 ‐54%  12.4* 2.2 +1% 12.3* 2.2 ‐1%

Ch 7 Chapter 7; SE standard error;  corr correlation; * p<0.05; ** p<0.01; *** p<0.001; ‡ p≤0.15;  
1 % change in RE estimated variance relative to less complex (earlier) model 
2 Total between person variance (e.g. RE variances for the Intercept + film + Fuji) shown in row
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between models 1 to 2 (relative to model 1), and by 44% between models 2 and 3 (relative to 

model 2).  The decline in within person variability for DA is similar between models 1 and 2   

(–31%) but higher between models 2 and 3 (–54%).  Because no further time varying 

parameters are added to the more complex models— parsimonious aggregate (model 4) and 

Primary models (model 5, most complex model)— negligible changes of <±1% are seen for 

within person variability during the transition from model 3 to model 4, and from model 4 to 5.   

 

Between person variability  

Addition of a (single) FE term for continuous time and a RE parameter for continuous time to 

model 2 compared to model 1 corresponded to increases of 15 to 18% in between person 

variability between the PD and DA unconditional means and unconditional growth models, 

Table 8-19.  As described in Chapter 7, the RE parameter for time allows each person to have 

their own growth curve (slope) which can vary from the mean growth curve fitted by the FE 

term for time.  This likely accounts for the increase in between person variability noted during 

the transition from models 1 to 2.   Most of the total between person variability in model 2 (e.g. 

the estimate of 2.32 for PD) is comprised of the variability in the between person intercept (e.g. 

2.3 for PD) and only a very small proportion is due to the RE parameter for time (0.02 for PD).  

The freedom to have a unique growth curve likely affected the RE intercept for some 

participants, increasing the variability of the between person RE intercept.  

 

The increase in between person intercept variability between models 1 and 2 may particularly 

have been affected by the single continuous FE parameter for time (e.g. FE annual change in PD 

of 0.05 for all participants, model 2 Table 8-19), because it does not suit the growth curves for 

some participants very well (e.g. the participants transitioning from film (highest average PD) to 

KE52 (lowest average PD) mammograms and then to KE54 mammograms will have a U- or V-

shaped (nonlinear) growth curve which cannot be modelled using a single straight line).  Terms 

for mammogram Version are also not incorporated into the unconditional growth model (model 
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2) as either fixed or random effects, which could potentially increase the variability in 

participant response.  Most participants transitioning from film to KE52 mammograms will 

decline in PD and DA, and then increase in PD and DA for KE54 and then Fuji mammograms 

(a U-shaped growth curve).  The between person RE parameters have likely changed to 

compensate for the lack of fit to the single FE parameter for time. 

 

Model 3 (unconditional aggregate growth) included FE terms for continuous time modelled as a 

spline with three segments and cut points at years 1 and 5.  Model 3 also incorporated RE slopes 

for film and Fuji mammograms at the person level, and an exponential covariance structure.   

Although these changes from model 2 to model 3 increased the degrees of freedom from 5 to 

12, model fit improved significantly; the corresponding changes in log likelihood (LL), AIC and 

BIC for PD were –565 to –400 (LL), 1140 to 824 (AIC) and 1161 to 875 (BIC). The 

unconditional aggregate model for DA showed similar improvements in model fit, e.g. decrease 

in BIC from 3939 (model 2) to 3727 (model 3).   

 

Improvement of model fit to the mean growth curve for the CMN IBIS-II participants in model 

3 decreased between person intercept variability in model 3 relative to both models 2 and 1.  

Both PD and DA show a ~18% decline in between person intercept variability for model 3 

compared to model 2.  Both models have an approximate 5% lower between person intercept 

variance compared to model 1.   

 

Although between person intercept variability declined for model 3 relative to both models 1 

and 2, overall (total) between person variability increased for model 3 compared to model 1.  

This is due to the addition of the RE slopes for film and Fuji mammogram Versions, which 

allow the growth curves of participants to randomly vary from the (FE) population average 

growth curve.  The change in total between person variability between models 2 and 3 is 
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negligible (<±1%), hence the increase in total between person variability for models 2 or 3 

compared to model 1 is about 17%.   

 

The addition of the FE BC risk covariates to the parsimonious aggregate model (model 4) 

markedly reduced variability in the between person random intercept as well as total between 

person variability, but almost all of this decrease was due to drop in variability of the between 

person intercept.  The decrease in variability of the between person intercept between models 3 

and 4 was –33% for PD, and –19% for DA.  Variability of the mammogram Version RE 

intercepts was essentially unchanged.  [As stated earlier in this section, within person variance 

was similarly unaffected, because the FE BC risk covariates are all constant (they do not change 

over time within each person).] 

 

Incorporation of FE terms for anastrozole treatment (a constant and an interaction term with the 

spline for continuous time) lowered the total between person variability negligibly between 

model 4 and the Primary model.  The very small decrease of –2% for the PD Primary model 

relative to model 4 was solely due to a –2% decrease in the between person RE intercept.  An 

even smaller decrease of –1% in between person RE intercept in the DA model was noted.  

Very small increases in the film and Fuji mammogram Version RE slope variability offset the 

small –1% decrease in DA RE intercept variability to yield a –0.5% change in total between 

person variability for the DA model. 

 

MD change over time 

As described in Chapter 7, alteration of the FE and RE modelling of continuous time from a 

single linear parameter to a continuous spline with three segments and cut points at year 1 and 5 

improved model fit for both PD and DA.  For example, changing continuous time from the 

single linear growth curve to the three segment spline significantly decreased the BIC for the 

PD model from 1161 to 1100.   
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Whilst the years 1 to 5 growth curve segment in model 3 retained the sign and magnitude of the 

single linear parameter fitted in model 2 (0.05, SE 0.02, p<0.05, Table 8-19), the baseline to 

year 1 and years 5 to 7 continuous time segments now replicated the expected mean decrease in 

MD over time.  

 

The coefficients for (aggregate group) MD annual change for models 3 and 4 are not large (e.g. 

baseline to year 1 for PD is –0.12, Table 8-19).  Although the SE increase (presumably due to 

halving of the sample size), the MD annual change coefficients for the control group in the 

Primary models (model 5) hardly differ from those of models 3 and 4. In other words, little MD 

change over time is occurring.  The small changes in MD growth for PD and DA seem to be 

reflected by the small estimated within person variance relative to total RE variance.  Within 

person variability as a proportion of total variability is low— in model 5 (Primary model) about 

5% for PD (0.09/(0.09+1.68)) and 3.5% for DA (12.3/(12.3+352)).  The intraclass 

correlations— the proportion of the “total outcome variation” which exists “between people” 

[490]— for PD and DA are correspondingly high.  The ICC for PD is 0.95 (1.68/(1.68+0.09)) 

and the ICC for DA is 0.97 (352/(352+12.3)).  Very little change in MD over time appeared to 

be present in the PD and DA models.  However, the high ICCs also imply that the (subjective) 

MD measurements (the average of the four mammographic Views per episode) are also not too 

variable.   

 

Addition of the BC risk covariates to model 4 did not appear to greatly affect the coefficients for 

PD and DA change over time compared to model 3.  The small change in MD growth between 

models 3 and 4 for both PD and DA implies that the BC risk covariates are unlikely to impact 

modelling of MD change over time.  Although very important for models of MD change and 

BC risk (and therefore clinically important), the BC risk covariates could potentially be ignored 

during measurement of MD if characterisation of change in MD was all that was required. 
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Addition of the anastrozole treatment parameters to model 5 had a larger effect on the DA 

model than for PD.  This may have occurred because the relative size of the anastrozole 

interaction terms (not shown in Table 8-19) for DA were much larger (e.g. ~20 to 60mm2, Table 

8-6) compared to the size of the interaction terms for PD (<±0.25%, Table 8-6).   

 

8.5 Discussion 
 

Treatment with anastrozole was expected to lower PD in the treated participants by 1 to 2 % in 

the first 12 months relative to CMN IBIS-II participants randomised to placebo treatment [29].  

However, a greater reduction in MD for the anastrozole treated group compared to controls was 

not apparent in the all mammogram (540 episode) Primary models of PD and DA. The PD 

Primary model interaction terms showed very small and non-significant PD changes for the 

anastrozole group relative to controls from baseline to year 1 for the all mammogram model 

(e.g. less than ± 0.25%/year, back transformed PD, Table 8-6). Whilst an expected, negative 

sign for the coefficients of DA change for anastrozole treated participants relative to controls 

was noted, the differences in DA change over time for the first year of treatment were not 

significant (p>0.25, Table 8-6, back transformed values of –21 to –58 mm2/year).   

 

The all mammogram Primary models are comprised of both film and digital mammograms.  

Whilst none of the digital only models showed significant change in MD over time for 

anastrozole treated participants relative to controls, fitting the Primary model with 63 film-only 

episodes yielded a significant –3.7% back transformed mean PD difference in annual change at 

12 months between the treated and control participants, Table 8-9.  The film mammogram only 

results for DA were also significant; back transformation of the coefficients yielded a mean 

difference in first year annual change of –547 mm2 (–5.5cm2) per year in DA between the 

treated and control groups for the film-only Primary model.   
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Figure 8‐17 Example baseline and 6 month film mammograms from one CMN participant  
Upper row – RCC View baseline and six month mammograms; Lower row – LMLO View mammograms. 
This participant’s treatment status is blinded, however the average Cumulus assessed difference in PD 
between the participant’s baseline and 6 month mammograms is –4.3%, similar to the average 
difference in one year change scores between treatment and control for PD on film mammograms 
between baseline to year 1 for the mixed model (–3.7%/year, Table 8‐9).  Although the Cumulus 
assessed average episode difference in density for this participant is nearly 5%, the visual difference 
between the film baseline mammograms (left column, taken 10 months prior to randomisation) and 
mammograms taken 6 months after randomisation (right column) is difficult to discern.  
The participant’s baseline characteristics are similar to that of the representative film mammogram 
participant (randomised at age 50y, menopause at age 50y, BMI of 25, baseline film episode average PD 
of 33%). 
 



Chapter 8 

354 

The back transformed difference in PD average change of –3.7% for the first year of anastrozole 

treatment relative to that of controls approaches a one category difference of 5% on the CRUK 

21–category visual scale.  A change of <5% is likely difficult to detect clinically using only    

visual assessment.  A Cumulus measured decrease of ~4% is shown in Figure 8-17.  The subtle 

differences in PD seen between these baseline and 6 month film mammograms are similar to the  

mean response to anastrozole (–3.7% PD) relative to controls for a representative anastrozole 

treated participant with film mammograms from the sample IBIS-II population, Table 8-9. The 

visual difference in PD in Figure 8-17 is not pronounced.  Stating definitively that a visual 

decrease in PD has occurred is challenging. 

 

Although very modest (<5%/year), this is the first time, to our knowledge, a significant 

difference in annual MD change per year has been reported for women treated with an AI 

relative to controls in a randomised controlled trial.  One other study has reported a rate of 

change in PD during the first year of AI treatment [28].  An average (adjusted) annual rate of    

–0.12%/year (95%CI –0.84 to 0.59) for 48 women randomised to placebo vs –0.68 (95%CI       

–1.34 to –0.02) for 56 women randomised to letrozole treatment in the MA.17 trial was 

reported.  Adjusted mean first year annual change for the letrozole group was therefore              

–0.56%/year lower compared to that for controls (p=0.23, two sample t-test).   The rate reported 

for MA.17 may have been smaller than the rate reported for this project because the population 

had previously completed 5 years of TAM treatment for early BC within 3 months of 

randomisation to extended treatment with placebo or letrozole.  Tamoxifen is known to reduce 

MD [248, 296] as well as BC risk, so the women likely began the extended (AI) treatment phase 

with reduced density due to previous endocrine therapy. Given that the group sizes for each arm 

were larger in MA.17 (a baseline and 1 year mammogram were collected for all women in the 

study), it is also possible that the annual rate of change from this larger sample of women in 

MA.17 may be more representative of the true response to AI treatment. 
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The film-only, estimated first year back transformed –4% in relative annual PD change for 

anastrozole treated participants is at least double what was expected, although use of a more 

typical baseline PD reference value of 20% alters this back transformed estimate to –3%/year 

(Table 8-10).    Declines of greater than 2% at 12 months have been reported during AI 

treatment in single arm studies. Prowell et al reported baseline median PD of 13.4% which 

declined to 10.3% in a cohort of 54 women with early BC treated with 1 year of anastrozole 

[310].  A median PD difference of –3.4% at 12 months was reported for 35 high risk women 

treated with exemestane [30]. A decline of –3.1% at 12 months was also seen in an AI treated 

subgroup of women with early BC [18].  However, most AI studies report <2% mean decline at 

12 months of treatment [28, 29, 311-313].   

 

Further research is needed to determine if subtle (<5%) changes in PD due to AI treatment as 

noted in the film-only Primary model are related to reductions in BC risk.  This project was not 

powered to address this important clinical issue.  However the Primary aim of this project was 

to help ascertain if a detectable, possibly significant difference in MD exists between 

anastrozole treated participants and controls, to support the larger, long term goal of utilising 

MD as a biomarker for AI treatment efficacy.   

 

A very recent study utilising percent volumetric density measured using two commercially 

available programs compared volumetric density for women diagnosed with breast cancer 

treated with an AI (cases, N=403) to volumetric density in post-menopausal matched controls 

without breast cancer (N=1618) [33].  This case-control volumetric density project found 

statistically significant (p<0.05) differences in adjusted annualized change in volumetric percent 

density (VPD) for cases vs controls of approximately –0.25% (Volpara) and –0.5% (Quantra).  

Although statistically significant differences between cases and controls were found for annual 

change in volumetric percent density, interestingly, statistically significant changes in dense 

volume (cm3) were not found using either measurement program.  Even more interestingly, 
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perhaps, stratification of the cases and controls by baseline VPD of <10% vs ≥10% found no 

significant differences between cases and controls for annualised changes in VPD for women 

with baseline VPD <10%; however both Volpara and Quantra measured statistically significant 

increases in annualised change in dense volume (DV) for women with baseline VPD <10% 

(N>200 cases; N>1000 for controls).  

 

The VPD, AI and TAM project is the first to report a statistically significant change in MD for 

AI treated women compared to controls.  The significant findings of the case-control VPD, AI 

and TAM project underscores the necessity of measuring AI induced change in MD with 

precise, preferably fully automated techniques. The adjusted annual reductions in VPD for AI 

treated women relative to controls were –0.30% to –0.58%, which are quite small.  If these were 

(two dimensional) PD changes they would be almost impossible to detect using semi-automated 

thresholding techniques like Cumulus without extremely large number of cases and controls, 

due to the inherent variability of any subjective measurement method.   

 

Although volumetric density change was found to be approximately linear with time, another 

reason why the VPD, AI and TAM project annualised average VPD change estimates may be 

quite small is because change in volumetric density was measured using the last available 

mammogram on AI treatment (median 31.5 months).  If most of the change in MD due to AI 

treatment occurs during the first year of treatment, then annualised MD change measured later 

will be smaller than if measured at one year on treatment, (Figure 8-18, slope of green dashed 

line is smaller than slope of segment 1 (first red dashed line)).  However, longitudinal growth 

for AI treated vs control participants has never been characterised adequately, so it is not known 

if the growth curve for AI treated participants (relative to controls) is similar to that modelled 

for the tamoxifen treated participants in IBIS-I [296].  The comparatively marked relative 

reduction in first year annual PD change estimated for treated vs control participants for the film 

only Primary model in this thesis (CMN MD and AI substudy) is likely to be unusual. Although 
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the strong relative reduction in PD modelled for film mammograms hints at a strong reduction 

during the first year of anastrozole treatment, the (non-significant) relative increase in annual 

PD change for the treated group in the larger participant sample of the Primary (all 

mammograms) and digital only Primary models opposes this finding. 

 

 
Figure 8‐18 Different time modelling strategies for AI treated participants 

 
 
 
Because the VPD, AI and TAM project utilised raw mammographic data, the MD 

measurements made in that study were not affected by differences in digital image post 

processing. The measurements made in the VPD, AI and TAM project were also fully 

automated, hence their measurements are much more reliable than subjective measurements 

made in this project (CMN MD and AI substudy). Additionally, the VPD, AI and TAM also 

used paired pre-treatment and on treatment mammograms for each case with similar timing of 

mammograms for the controls, further adding to the validity of their model.  The results for the 

Primary Aim of this thesis in contrast, were affected by a small sample size, variable numbers 

of episodes collected per participant, and frequent changes in mammographic Version over 

time, in addition to the variability introduced by the subjective measurement method.   
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The results of the VPD, AI and TAM project suggest it might be worthwhile stratifying the 

Primary Model into two groups of participants with higher and lower PD, as participants with 

low VPD in that project showed a significant increase in DV for the AI treated women 

compared to controls.  Whilst stratification by initial PD in the aggregate longitudinal model did 

show an easing in baseline to year 1 PD annual decline for women with lower initial PD 

(Chapter 7, Table 7-13), this comparison was not examined for the Primary Aim due to the 

small cell sizes for stratification by PD and treatment group.  

 

The modelled change in DA at 12 months for the film only Primary model was also higher than 

the one study which reported change in DA during AI treatment [31].  Mean decline in 

(absolute) DA for 259 women treated for early BC with exemestane or letrozole at 24 months 

was –180mm2 for this earlier study, compared to the back transformed annual DA decrease (film 

only Primary model) of about –550mm2 at 12 months of treatment for the anastrozole treated 

group relative to controls for this project (Table 8-9, DA intercept2 value of 3850mm2).  Back 

transformed DA using a more characteristic value of 2700mm2 yields a slightly smaller annual 

first year rate of DA change of –455mm2/year.  The smallest average DA difference which can 

reliably be measured is not well characterised, however an automated method of assessing both 

PD and DA may be able to reliably detect subtle longitudinal differences on mammographic 

images, as shown recently for DV using volumetric techniques. 

 

Most of the MD and AI literature cited above were undertaken using film mammograms only, 

so this is unlikely to be the source of the differences between other studies and the estimated 

rate of change on MD due to AI treatment in this project (CMN MD and AI substudy).   

 

Although the annual change in MD from baseline to 12 months for the anastrozole treated group 

relative to the control group for film only mammograms (about –3%) is much higher than 

expected, the model appears to be internally valid.  The ‘raw’ median PD difference (subsequent 
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PD–baseline PD) for the 14 participants with unique pairs of film mammograms at baseline and 

6 months (n=7) or baseline and 12 months (n=7) was –1.9% (aggregate treated+control data, not 

tabulated).  This is not very different from the modelled aggregate change in (untransformed) 

PD for film mammograms of –1.8% between baseline and year 1 (Table 7-6, Chapter 7).   The 

aggregate rates of annual first year PD change for film mammograms for raw PD difference     

(–1.9%/year), mixed model of untransformed PD (–1.8%/year) and back transformed PD         

(–1.5%/year to –2.3%/year) are all quite similar. 

 

Participants who contribute more data are more heavily weighted in the mixed model. Restric-

tion of the aggregate film-only square root transformed PD model to just the 32 film episodes 

from 14 participants with 2 or more film episodes yielded a significant change in PD of –0.21 

(p=0.022, SE 0.092, 95%CI –0.39 to –0.03, data not tabulated).  These results are almost iden-

tical to the results of the aggregate square root transformed PD film only model with all 63 film 

episodes: baseline to year 1 annual PD change of –0.20 (Table 7-6, p-value 0.023, SE 0.089, 

95%CI –0.37 to –0.03 (latter statistics not tabulated)).  The similarities in (film only) coeffi-

cients and SE between the 63 episode, 45 participant aggregate model and the restricted 32 

episode, 14 participant model implies that the significant film-only baseline to year 1 result in 

the Primary model is likely based on the data from these 14 participants.  This equates to an 

effective sample size of 14. The estimated power to detect a difference in means of 4, standard 

deviation of 8, significance level of 0.05 with 7 participants in each group (assuming that the 14 

participants are equally distributed between the two treatment groups) is 0.155.  This further 

underscores the utility of the mixed model to detect alterations in MD growth (change over 

time) between treatment groups, and indicates that the study is quite underpowered to detect 

even a relatively large (for an AI) difference in mean MD between treated and control groups. 

 

Weighting within the mixed model may also have skewed the actual difference in (raw) mean 

MD between treatment groups in the film only Primary models.  Of the fourteen participants 
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with two or more film mammograms, three participants contributed baseline, 6 months and 12 

month film episodes.  Longitudinal data from these three participants are likely to be more 

heavily weighted in the model than data from participants with only 2 film episodes.  Median 

difference in PD at 6 months for the 3 participants was –2.7%, and –3.6% at 12 months.  Due to 

blinding, it is not known if these participants were randomised to anastrozole treatment, but if so 

this may have also inflated the modelled film-only back transformed Primary model value of     

–3.7% (–3%, 20% PD reference value) in first year annual rate of PD decline for participants 

randomised to anastrozole relative to controls.   

 

The results from the digital mammogram only Primary model reflected the results from the all 

mammogram Primary models: only non-significant interactions between anastrozole treatment 

and MD change over time were found for the digital only PD and DA Primary models, Table 

8-11. Although some of the p-values were relatively low (p=0.23 for PD and p=0.14 for DA for 

the years 1 to 5 interaction term), a larger sample size may however show that a significant diff-

erence between the treatment groups also exists for models utilising only digital mammograms.  

 

A sensitivity analysis undertaken for this project, the CMN MD and AI substudy, for different 

continuous time cut points (section 8.4.4.3 Change points from 1.25 to 2.0 years) showed that 

the rate of annual PD change for the first continuous time segment was maximised for the 

control group at a cut point of 1.0 years, Table 8-15.  However, the rate of annual PD change for 

the IBIS-II control group should, in theory, be consistent from baseline to year 7 (as discussed 

in section 8.4.4.3 (Change points from 1.25 to 2.0 years)).  The lack of a consistent annual rate 

of decrease for the control group implies PD changes from the film to digital transition (Figure 

7-5, Chapter 7) and the intra-digital mammogram transition (from KE52 to KE54 to Fuji; Table 

7-2, Chapter 7) have been strongly influenced PD mean growth in the model, as illustrated by 

the widely varying growth curves of the different first year Version groups in Figure 8-16.    
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The sensitivity analysis for the Primary Aim (this chapter) would have benefitted from a model 

with time fitted as a categorical parameter for each treatment group.  This may have provided 

additional insights into the growth curves for the anastrozole treated and control participants in 

this project. Further stratification by mammogram Version would be desirable, however, the 

number of CMN participants with repeated measurements within any Version is small (re: Table 

7-16, Chapter 7), making interpretation of such models problematic.  

 

One of the main difficulties encountered in the longitudinal analysis for this project (the CMN 

MD and AI substudy) was use of processed digital mammographic images.  The instability of 

the amount of MD retained on the processed digital mammographic images is likely the largest 

source of potential error and confounding for assessment of longitudinal MD in this project.  

Although no difference in BIRADS MD categorisation between film and digital mammograms 

in a very large dataset was reported [508], comparison of the film and digital distributions 

(Figure 7-7 and Table 7-3 in Chapter 7) made with Cumulus assessed PD in this project (the 

CMN MD and AI substudy) implies that much of the longitudinal density information was 

removed by post-processing of the Kodak Elite mammograms.   

 

Why the aggregate results for the KE54 mammograms do not show a significant decrease from 

baseline to year 1 is likely due to few repeated measurements (n=3, Table 7-15, Chapter 7) for 

participants from baseline to year 1.  However, the reasons why the KE54 mammogram Version 

showed a significant increase during years 1 to 5 compared to the other mammogram Version 

(Table 7-14, Chapter 7) is not known.  Other MD and AI studies have shown increases in MD in 

response to AI treatment in approximately 10 to 20% of subjects [28, 31, 311]; the prognostic 

value of these increases in MD is not known.  Increases in MD from hormonal treatments are 

typically associated with increases in BC risk [246, 496, 509, 510], however they may be 

associated with lower BC risk in certain circumstances [272, 497]. 
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Adjustment with typical BC risk factors appears to have little impact on the rate of annual 

change in PD due to AI treatment, similar to that seen in other studies (MA.17 trial [28] and 

[29], [313]). Hence adjustment for BC risk factors seems to have negligible effect upon the rate 

of annual change in PD due to AI treatment.  This implies that—for the purposes of ascertaining 

if differences in longitudinal PD and DA exist between the AI treated and control groups in the 

high risk population of the IBIS-II trial—measuring PD and DA only might be sufficient for this 

purpose.  Modelling of/adjustment for BC risk covariates is not required.  However, not all 

known MD and BC risk confounders were modelled in this thesis; confounders such as duration 

of breast feeding and number of children were not available to model.  Therefore further 

investigation of the apparent lack of effect of BC risk factors on longitudinal MD change in 

post-menopausal, high risk women, as well as other populations of women, is warranted. 

 

Baseline BC risk and MD characteristics were similar between treatment groups, Table 8-2 and 

Table 8-3; hence any differences in MD due to the transition between film and digital 

mammograms and between digital Versions are likely balanced between the anastrozole and 

control groups.   

 

Because the estimated average treatment effect of anastrozole noted for film mammograms is 

small (<5% PD/year) relative to the clinically (visually) detectable minimum change of 10%, 

this implies that methods other than visual assessment which are able to reliably detect small 

differences are required to assess mammograms for potentially clinically important, but quite 

small and difficult to discern differences in MD during AI treatment.  The related, and also 

relatively small, back transformed mean DA difference of ~5.5cm2 (film only model, Table 8-9) 

for the difference in change over 12 months for anastrozole treated participants relative to 

controls at 12 months is also likely to require an automated (non-subjective) method to reliably 

detect this small change.   
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A non-proprietary automated program to remeasure MD on the CMN IBIS-II mammographic 

images could be used to generate new MD measurements, for use in a mixed model and/or 

mean difference in MD statistical tests.  A number of automated programs exist, but in general 

the creators of the image processing techniques have only described (sometimes in great detail) 

the steps and algorithms used during image processing, e.g. [410, 511, 512].  Few have made a 

full, downloadable program freely available for public use.  However, as of 2016 the new 

LIBRA program is freely available.  The program has been validated on both (“analogue like”) 

raw and processed digital images, and its measurements are comparable with Cumulus 

measurements made on the same set of raw and processed digital images [513].   Another 

program, STRATUS, has not yet been made publicly available but also works on both raw and 

processed mammographic images [415, 514]. It would be interesting, in the future, to remeasure 

the CMN IBIS-II mammograms using these programs and assess for differences in the treated 

and control groups.  If the programs are easy to use, and also provides reliable measurements of 

MD, they could prove a clinically useful method to assess for AI induced changes of MD.  The 

results of this project imply, however, mammogram Version would need to be stable between 

mammographic episodes for any measurement technique utilising post-processing digital 

images to provide reasonable estimates of longitudinal MD change. 

 

More coefficients changed between the aggregate model and treated vs control model for DA 

than for PD, however the differences were also very small; most differed by <10% except for 

the coefficient for non-parous women. Differences in annual MD change for the control group 

compared to those for the aggregate model is expected due to the interaction term.  Given the 

small impact on MD annual change noted for the addition of BC risk covariates to the mixed 

model (i.e. Model 3 vs Model 4, Table 8-19) the change in coefficient value for non-parous 

women is unlikely to be clinically significant.  
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The model appeared to be a reasonable fit to the data, without any egregious departures of 

normality for the RE residuals.  The mixed model appears to fit the PD data slightly better than 

the DA data, Figure 8-4 and Figure 8-5, because the PD predicted vs observed values more 

closely follow the line of equality.  The linear prediction (generated using the estimated FE 

coefficient values) appears to somewhat under predict both PD and DA at higher observed 

values and over predict them at lower observed values.  This implies that the model could be 

improved, perhaps through use of additional covariates although (as mentioned) incorporation 

of covariates does not seem to change the rate of MD change substantially.  Use of larger 

dataset may also improve the predictive abilities of the model by including more women with 

very high MD. 

 

In the general population, the annual decrease in average PD over time noted at younger ages 

tapers off for women over age 65 [145, 189].  In this CMN MD and AI project, younger treated 

participants may have experienced a greater between treatment group difference in decline in 

PD during baseline to year 1 than their older (>60 years) counterparts, Table 8-16.  Greater 

declines in PD due to AI treatment have previously been associated with lower age and/or 

higher baseline PD [18, 31, 310, 312], however an association between higher age and/or PD 

was not found in all studies [30, 31].   

 

Differences in longitudinal DA for older vs younger women, and higher vs lower initial DA 

were not modelled.  It would be interesting to compare the age-related and initial PD and DA 

results from this project, since the age-related decrease in mean DA appears to be relatively 

stable until age 70 [189], however this was considered to be beyond the scope of the current 

project, and would potentially require a large sample. 

 

Many of the earlier studies which examined the effects of AI treatment on MD also examined 

other potential biomarkers, e.g. Ki-67—a tissue proliferative index [303];  expression of trefoil 
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protein 1 (TFFI)—an estrogen response gene present in breast tissue [30]; serum insulin-like 

growth factor (IGF) levels [29]; reductions in bone mineral density [29, 313]; and serum 

estrogen levels [29, 30, 310].  Although small changes in MD due to AI treatment on their own 

may be difficult to utilise as biomarker for treatment efficacy, potentially the combination of 

changes in MD with other biomarkers of treatment effectiveness could be used to predict which 

women will respond to treatment with AI.   

 

The models fitted in Chapters 7 (Aim 4, aggregate models) and this chapter (Primary Aim, 

treated vs control groups) displayed the expected decreases in RE variability with the addition 

of fixed and time varying covariates, Table 8-19.  Information on some important confounders 

of BC risk and MD were not collected for the IBIS-II participants— e.g. number of full term 

pregnancies, duration of breast feeding, change in BMI over time.  Use of these covariates may 

have improved model fit. The addition of the (BC risk) covariates was found to reduce estimates 

of the between person variability in the mixed model (i.e. total between person RE variability 

decreased –16% between model 3 and model 4, Table 8-19), although the growth curve 

coefficients were not greatly affected.  

 

Differences in the continuous time coefficients, Table 8-19, as well as higher within person 

variability estimates, between the unconditional growth model (model 2, fitted with an uncut 

continuous spline) and the unconditional aggregate growth model (model 3, fitted with a three 

segment continuous spline), show that modelling of time parameters which do not suit the 

(mean) growth curves in the data can causes errors in model outcomes.   

 

This analysis has a number of strengths.  The studied population were participants in a large 

international, investigator-led clinical trial run by well-established organisations with expertise 

in designing and coordinating BC randomised controlled trials.  The majority of CMN IBIS-II 

trial participants were willing to contribute their mammograms for use in approved MD 
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projects.  The population was well characterised; for example, a complete set of baseline data 

was available for every CMN IBIS-II participant included in the sample population.  BC risk 

factors were well balanced between the treatment groups.  Many randomisation and all post-

randomisation mammograms were undertaken on a single mammography machine at the CMN 

hospital.  The selected statistical model, a hierarchical linear mixed model, is a popular 

technique for assessing longitudinal growth [490].  The use of processed digital mammograms 

reflects the circumstances facing most MD research as well as clinical conditions in the post-

film era of mammography.   

 

The study was limited by typical difficulties in collecting mammographic data, such as expense, 

time, and geographical distance.  The lack of a freely available (at the time the measurements 

were undertaken), consistent and fully automated MD measurement technique introduced 

variability into the MD measurements.  The film to digital transition and ongoing changes to 

digital mammogram acquisition and post-processing at CMN impaired the likelihood of 

accurately assessing MD change over time for IBIS-II participants with digital mammograms, 

which comprised most of the available mammographic data. Although statistically significant 

differences in PD and DA longitudinal growth for the treated group compared to controls were 

observed during the first year of anastrozole treatment for participants with film mammograms, 

the modelled outcomes resulted from a small sampled population (as many as 45, but likely as 

few as 14 women due to weighting within the model) with unequal numbers of episodes 

contributed per participant.  The power for this CMN MD and AI study was low due to the 

small sample size, and adequate power was only possible for moderate to large effect sizes.   

 

Some limitations on the generalisability of this study exist. The CMN participants in this study 

are likely to originate from the lower Hunter (greater Newcastle) and other regional areas of 

NSW, which have a primarily Caucasian population (i.e. approximately 95% are likely to be of 

European ancestry [515]); therefore these results may only be applicable to primarily Caucasian 
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populations.  All IBIS-II participants are at high risk (1.5 to 2-fold or greater) of BC; hence 

these results are likely only applicable to other populations of post-menopausal women at high 

risk of BC (1.5 to 2-fold or greater). The estimated back-transformed intercept values for the 

Primary and film-only Primary models for PD (~30%) and DA (~3800mm2) are higher than 

median PD and DA estimated at baseline for the CMN participants (e.g. 18.9% PD) and median 

PD for other postmenopausal populations (e.g. 18.7% PD [144]). The back-transformed model 

coefficient estimates in Table 8-6 and Table 8-9 therefore have larger absolute values than have 

been tabulated using more representative values for PD and DA during back-transformation of 

the coefficients (i.e. 20% PD and 2700mm2 DA, in Table 8-7 and Table 8-10 ). 

 

8.6 Conclusion 
 

Treatment with anastrozole may be associated with a small, but significant reduction in change 

in PD and DA over time compared to PD and DA change in similar women not undertaking 

treatment with anastrozole. Further research is required to ascertain if the AI associated 

modelled reductions on film mammograms for PD and DA are seen in the broader IBIS-II 

population, and if they can be consistently measured in other groups of women treated with AI 

for BC prevention and treatment.   

 

Validation of the results noted for film mammograms is also required for PD and DA measured 

on digital mammograms, as film mammography is now rarely utilised in developed regions. 

An additional analysis of treated vs control participants baseline to year 1 mammograms 

separately by digital mammogram type (KE52, KE54) may provide interesting (hypothesis 

generating), if non-significant, results for MD measured on digital mammograms.  

 

The clinically important issue of whether these subtle changes in MD associated with AI 

treatment are also associated with lower of rates of BC incidence in the prevention and 

treatment settings needs to be addressed.  Changes in MD could potentially be combined with 
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changes in other potential biomarkers for AI treatment, to provide better insight into which 

women will respond to AI treatment.   

 

Use of post-processed digital mammograms introduced undesirable and probably 

insurmountable variability in the amount of MD retained on these images, disrupting accurate 

representation and therefore longitudinal measurement of MD on the CMN IBIS-II participant 

digital mammograms. Use of a semi-automated measurement technique (i.e. assessor 

inconsistency) further added to measurement variability.  If a treatment effect from anastrozole 

on MD was present, both of these issues likely contributed to the inability to detect it.  Re-

measurement of the IBIS-II mammograms using another technique, preferably one that is 

readily accessible, fully automated, and reliable, may improve the reported estimations of MD 

change for the anastrozole treated participants relative to controls (for both film and digital 

mammograms).   

 

The likelihood of detecting changes in MD due to treatment with AI could be improved if both 

the baseline and one year post-treatment mammograms are taken on mammography machines 

with identical software and hardware configurations.  This would eliminate the differences in 

image post-processing over time which affected the digital, but not the film MD measurement 

results in this project.  Adoption of another strategy such as collection of the raw 

mammographic images may also be beneficial, but this latter approach is likely to require 

additional manipulation of the images prior to measurement.  However, use of commercially 

available programs which used raw mammographic data to measure changes in volumetric 

breast density for AI (and tamoxifen) treated women diagnosed with BC have provided 

evidence that this approach may be suitable to detect change due to AI treatment. 

 

Mammographic density may prove to be a valid biomarker for AI treatment efficacy; reductions 

in MD due to AI treatment in combination with other biomarkers may yield a useful clinical 
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tool to predict women who will respond to treatment.  The major impediment to substantiation 

of MD as an endocrine therapy biomarker, especially in the age of digital mammography, 

appears to be lack of a widespread (unified), well validated, reliable and automated method with 

which to measure it, as well as stability of the (processed) digital images over time.  Wider 

implementation of automated measurement techniques may assist with future studies of MD as 

a biomarker for AI and other treatments, especially if measurements from the different 

techniques are interchangeable.  Standardisation of the retention (removal) of the dense tissues 

from digital mammograms, and/or the routine retention and use of ‘raw’ digital data, would also 

improve the validity of longitudinal MD/BD studies. 
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9. Discussion 

 
The Primary Aim of this thesis was to compare longitudinal changes in mammographic density 

for treated vs control participants in the IBIS-II trial.  This was undertaken to discover if 

measurable MD differences existed between IBIS-II treatment groups, as lower MD in response 

to anastrozole treatment may be an early indication that treatment is effective.  Previous 

research has shown women who experienced lower levels of MD in response to estrogen-

lowering endocrine therapies such as tamoxifen and aromatase inhibitors are at lower risk of 

developing hormone-sensitive BC [17, 18]. Results from the Primary Aim Models, comprised 

of MD measured from both film and digital mammograms, did not show a significant difference 

in response over time for anastrozole treated participants compared to control participants in the 

CMN MD and AI substudy.  However, a possible treatment effect was noted in a sensitivity 

analysis of the Primary Model utilising film mammograms only— anastrozole treated 

participants had a small (<5%) but significantly greater rate of annual decline in percent density 

and dense area from baseline to year one compared to control participants.  This is the first time 

a significant difference in MD change over time has been detected in a randomised controlled 

clinical trial for women treated with an AI relative to a control group. This result implies MD 

may be a useful biomarker of treatment efficacy in AI treated women.   

 

Prior to completing the Primary Aim, a number of related preliminary activities were 

undertaken.  The factors affecting BC and MD were reviewed (Chapter 2) because they are 

useful to know: probable confounders need to be taken into account when preparing models of 

longitudinal change in MD.  It is also necessary to know if important confounders are missing 

(e.g. age or BMI).  The techniques available to measure MD were appraised (Aim 1). Three 

techniques were selected to measure MD on the Calvary Mater Newcastle IBIS-II 

mammograms; repeatability results from two of the methods, the visual and Cumulus 

techniques, are reported in Chapter 5 (Aim 2).  The repeatability analysis revealed the Cumulus 
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MD assessment technique was more reliable than the visual assessment technique.  Correlation 

of the repeated measurements with Cumulus was high; repeated measurements ICCs ranged 

from 0.94 for digital mammograms to 0.97 for film mammograms. The variability in PD 

measurement using the Cumulus technique, however, was about PD ±10%, which is 

approximately equal to the smallest meaningful PD change associated with a difference in 

clinical outcomes during the IBIS-I (tamoxifen) BC prevention trial [17].   

 

Baseline characteristics of the CMN IBIS-II participants, and associations between the 

participants’ baseline MD and BC risk factors, are described in Chapter 6 (Aim 3). Baseline 

characteristics of the 120 CMN IBIS-II participants who contributed MD measurements to this 

study did not differ greatly from the cohort of all international IBIS-II participants.  Typical 

baseline associations between MD and BC risk factors were found for the CMN participants, 

e.g. higher MD was associated with lower BMI, and lower MD was correlated with increasing 

age.  Film mammograms were found to have significantly higher PD and DA compared to MD 

measured on digital mammograms.  

 

A longitudinal model of the aggregate (treated and control) MD response to anastrozole 

treatment was developed in Chapter 7 (Aim 4) using a linear mixed regression model to account 

for the repeated (longitudinal) measurements in the data.  Square root transformations of the 

outcome parameters PD, DA and BA were undertaken to improve residual normality 

assumptions for the regression models. The BC risk factors age at randomisation, body mass 

index, age at menopause and age at first birth were found to be significantly associated with 

square root transformed PD.  The BC risk factors age at menopause and age at first birth were 

found to be significantly associated with square root transformed DA. Significant differences in 

PD and DA were found for all digital mammographic Versions relative to film mammograms in 

all PD and DA models. Adjustment of the longitudinal models by the BC risk factors reduced 

between person variability in the PD model by 27%, and the DA model by 16%, however these 
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adjustments had negligible effects upon the PD and DA annual rate of change estimated by the 

models. Although adjustment for BC risk factors is very important during modelling of MD and 

BC risk [178], this result implies if the outcome of interest is solely the response of longitudinal 

MD to AI treatment (and not BC risk/BC outcomes) it may not be necessary to adjust for BC 

risk factors during modelling of the treatment effect.  This feature could be useful during 

community studies of AI prevention, if the BC characteristics for the women are not reported or 

known. 

 

The Primary Aim (Aim 5, Chapter 8) was accomplished by adding terms for anastrozole 

treatment to the aggregate (blinded) model from Chapter 7 in an unblinded analysis of the CMN 

IBIS-II MD response to trial treatment.  The analysis was performed with the assistance of 

collaborators at QMUL, who have access to the treated vs control (unblinded) IBIS-II trial data.  

Although a non-significant rate of annual change in PD between baseline and year 1 for treated 

participants vs control of +0.2% was estimated by the Primary Model (both digital and film 

mammograms, 120 participants) and +0.8% (non-significant) for the digital mammogram only 

Primary model (120 participants), the film mammogram only Primary model (45 participants) 

showed an anticipated and significant  average annual rate of decline of approximately –3% 

from baseline to year 1 for anastrozole treated participants relative to placebo treated 

participants.  The baseline to year 1 changes for DA for treated vs control participants were 

similar to those for PD: DA increased non-significantly for the Primary model (all 

mammograms) and digital mammogram-only Primary model, but annual rate of change DA 

decreased significantly for the film-only Primary model (–5 cm2/year on average). 

 

No other significant decreases (or increases) in the rate of annual change for the treated 

participants relative to controls were noted for PD or DA for the Primary model, digital 

mammogram-only Primary Model for the other time periods modelled (years 1 to 5, years 5 to 

7).  (All film episodes bar one occurred at or prior to year 1, hence no reliable data after the first 
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year post-randomisation were available for the film-only Primary model.)  Given the small 

sample size (120 participants), a suggestion of DA reduction for anastrozole treated participants 

relative to controls was  observed: treated vs control annual DA change for years 1 to 5 for the 

digital mammogram-only Primary models was about –0.5cm2/year (–66mm2/year), p=0.14.   

 

These results are based on a very small sample size of women, especially the results for the 

film-only Primary model which (due to weighing of repeated measurements in the mixed linear 

regression model) may be based on a sample of as few as 14 participants.  This is one of the 

principal limitations of this project. Hence this project has insufficient power to detect 

differences if they exist; because of the small sample size and unequal number of episodes per 

participant, the significant baseline to year 1 result for the film-only Primary model should be 

viewed cautiously. Further investigation of the Primary model results within a larger population 

is warranted.   Fortunately, a mammographic density study is planned for the international 

cohort of IBIS-II participants; this other, international project will hopefully confirm and 

expand upon the results presented in this thesis.  This international study may also be able to 

address the issue of monitoring individual women, e.g. what is the smallest AI-induced MD 

change possible to reliably detect for the MD assessment methods chosen for the analysis.  

 

As described in Chapter 8, other limitations besides the small sample size/limited power include 

the variability of the subjective assessment technique, and the changes in dense appearance of 

the mammograms due changes in mammographic Versions (e.g. image post-processing 

software).  The differences in MD distribution and appearance of images from the three 

different digital mammographic Versions utilised in this project infers that adjustment of the 

post processing algorithms to maximise BC detection  in digital mammography is ongoing,  The 

approach taken during post-processing by the various machine vendors also appears to differ. 
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It is understandable that mammography machine manufacturers would incorporate software 

algorithms to remove as much of the dense appearing tissues of the breast on digital 

mammographic images as possible, without (hopefully) affecting the ability to detect cancerous 

lesions.  Mammographic density has long been one of the prime causes of missed BC detection 

on mammograms.  The ability to increase BC detection through manipulation of the digital 

mammographic image is one of the reasons why digital mammography has overall superior to 

rates of BC detection compared to film [516, 517].  Sensitivity in women with dense breasts, 

and younger women (who tend to have denser breasts) is enhanced for digital mammograms 

compared to film.  However, film may be superior for BC detection for women with older 

women (who tend to have lower MD) and women with fatty breasts [459].  Given that the main 

purpose of mammography is to detect BC, manipulation of the resulting images to enhance BC 

detection makes sense. This manipulation however has caused loss of information for secondary 

use of the mammograms, such as detection of longitudinal differences in MD due to AI 

treatment in this project.   

 

Given the promising results of the VPD, AI and TAM study, and those for a another AI study 

which successfully utilised longitudinal raw mammographic images in conjunction with film 

images [31], use of the raw mammographic data for the CMN IBIS-II participants would likely 

have provided a better insight into the MD changes for the treated group relative to the control 

group.   

 

Processed digital images have been successfully utilised in projects comparing MD and BC risk 

[504, 512, 513].  The correlation between PD measured on processed vs raw digital image data 

is typically high, and the associations for MD and BC risk produced with either type of image 

similar.  However, a general recommendation from these studies is to use the same processed 

digital image type (i.e. Version) throughout population or longitudinal studies. The Primary 

model was not repeated for subsets of mammograms with a single digital Version only (i.e. 
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separate models were not fitted for KE52, KE54 and Fuji only mammograms), because of the 

small sample sizes.   

 

Because all IBIS-II participants are at high risk of BC, the results of this study are likely only 

generalisable to other populations of post-menopausal women who are also at high risk (1.5 to 

2–fold or more) of BC. Therefore the results of this thesis may not be applicable to populations 

of average-risk women (who may or may not consider AI treatment for BC prevention as their 

risk of BC is lower than that for IBIS-II participants).  Strengths of the study include that the 

comparisons of MD change over time were made for two similar groups of women randomly 

assigned to anastrozole or placebo treatment, and that the BC risk characteristics for these 

women were well documented, because they are participants of randomised trial coordinated by 

experienced, investigator-led cooperative BC trials groups.   

 

The results from the Primary models are similar to those for other projects which compared 

change in aromatase inhibitors in treated compared to control populations.  Non-significant, but 

lower PD at around one year of treatment has generally been observed for AI treated women 

compared to control women in other randomised studies [28, 29, 313].  Very recently published 

results, however, demonstrated small but generally significant annual reductions in volumetric 

density (–0.25 to –0.75%/year) for cases (women treated with AI for BC) compared to healthy 

controls from the general screening population [33].    

 

In this project, the CMN MD and AI substudy, the first year rate of change in PD for 

anastrozole treated participants relative to controls noted for participants with film 

mammograms in this project is relatively small, about –3%.  This small annual change in PD is 

unlikely to be reliably detected using visual assessment of mammograms (i.e. during 

mammography clinics); other methods of detecting the subtle changes which are likely to be 

imparted on the breasts during AI treatment should be employed, such as the commercial 
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volumetric techniques utilised in the recent volumetric density project. Potentially, other 

biomarkers besides changes in MD could be used either in lieu of, or in addition to this potential 

AI biomarker.   

 

The reviews of BC and MD in this thesis confirmed BC is very heterogenous disease, with 

many associated risk factors.  Few strong (>3-fold) risk factors for BC exist.  It is difficult to 

predict which women will develop BC and which will not, even among populations at very high 

risk such as women with BRCA1 mutations.  Hence screening for populations of women at 

higher risk of BC is essential, to increase the likelihood of detection of BC at an early stage for 

the best treatment and survival outcomes.  BC risk increases with age. MD (a strong BC risk 

factor) is typically too extensive in younger women to make mammography worthwhile (BC is 

concealed by the dense breast tissues); however MD tends to decline with age, particularly over 

the menopausal transition.  The combination of increasing BC risk with age and declining MD 

(in conjunction with other factors) is why many population-based, mammographic screening 

programs, including Breast Screen Australia, commence invitations to screen around the 

average age of menopause (50 to 51 years).  High MD is an important issue clinically [201], as 

it often masks cancer detection on mammograms. The best screening paradigm for women with 

high MD, however, has not yet been established.   

 

The methods review in this thesis (Aim 1, Chapter 4) re-confirmed that MD is difficult to 

measure repeatably and reliably; this fact was also demonstrated during Aim 2 (Chapter 2, 

reliability analysis) and Aims 4 and 5 (Chapters 7 and 8, longitudinal MD analyses).  This 

difficulty in reliably measuring MD is part of the reason a woman’s MD is not generally 

disclosed to her during BC screening, and is likely the primary reason why MD is not studied 

more broadly as a potential biomarker for treatment efficacy.  Many techniques exist to measure 

breast density, and more are developed every decade.  However no single method has been 
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shown to be superior to others, hence no true standards exist to measure MD and many different 

methods are in current use.   

 

The lack of a precise, quick, reliable and easy to use method to measure mammographic density 

impacted upon the ability of this project to assess MD differences in the CMN treated vs control 

IBIS-II participants.  Additionally, the differences in post-processing of digital mammograms 

caused variable amounts of density to be removed from the post-processed digital 

mammograms.  Besides the measurement errors introduced by the subjective MD assessment 

method, changes to the appearance of MD on the (processed) digital mammograms were likely 

the other major source of error in assessment of the true MD difference between IBIS-II 

anastrozole treated participants and controls.  Two extant commercial measurement programs 

integrated with digital mammography machines (which utilise pre-processing (‘raw’) 

mammographic data) may have provided longitudinal data suitable for measurement of the 

small average percent density change (–1 to –2%) expected from anastrozole treatment in IBIS-

II participants, if it had been possible to use these methods during this project.   

 

Visual methods are adequate for epidemiological purposes to categorise women into levels of 

BC risk based on the amount of MD on their mammograms, and for categorising the likelihood 

that BC has been missed on a mammogram.  This thesis confirms, however, previous research 

which shows consistent measurements of MD are difficult to reproduce, and semi-automated 

computer programs provide consistency which is superior to visual methods.  The fluctuations 

in MD assessment noted even with utilisation of the more consistent semi-automated technique 

imply a fully automated method would enhance the likelihood of a definitive outcome.  Given 

that BC prevention therapies are highly desirable, especially those that may be particularly 

efficacious in women with high MD (e.g. [20]), use of imaging techniques to improve use of 

MD as a biomarker for treatment efficacy are urgently required.   
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9.1 Future directions 
 

Ongoing research is required for techniques to identify women who will develop breast cancer 

and those who will not.  The evidence provided in this thesis indicates breast density may be 

modestly reduced in women treated with anastrozole for BC prevention compared to similar 

women who do not receive treatment.  The reviews of BC and MD in earlier chapters of this 

thesis indicate that MD may be an underutilised BC biomarker in many different areas, such as 

1.) characterisation of MD from puberty to first full-term pregnancy as a biomarker for BC risk 

(this is an area of active research); 2.) characterisation of intra-, post- and inter-pregnancy 

changes in MD as a biomarker for BC risk (can  changes in MD be utilised as a pregnancy-

associated BC predictor?); 3.) high vs low MD and risk of BC recurrence with and without 

radiotherapy.  A recent review of MD as a potential biomarker for adjuvant and preventive BC 

treatments outlines the steps which might be undertaken to enable broader use of MD as an 

endocrine therapy biomarker [518]. 

 

Specific recommendations for future research, based on the work included in this thesis are: 

 
1. Confirmation that reduction in MD during (the first year of?) anastrozole treatment for BC 

prevention is associated with a reduction in BC incidence, such as what has been observed 

for preventive treatment with tamoxifen [17] as well as AI treatment for BC [18]. The very 

recent results of the VPD, AI and TAM project [33] provide good evidence that MD may be 

a useful biomarker for AI treatment efficacy.  Results from the international IBIS-II MD 

and AI project coordinated by QMUL will hopefully provide insight into whether 

reductions in MD due to AI treatment are associated with reductions in BC incidence within 

the IBIS-II randomised control trial population. 

 
2. Use of a mixed model to model MD change on unblinded IBIS-II data, to ascertain if 

certain characteristics are associated with greater or lesser changes in MD, such as those 
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due to AI treatment. If certain characteristics (such as higher baseline MD, recent 

menopause) are associated with MD change, they may add to the predictive capacity to 

ascertain women who will most benefit from AI preventive therapy. One of the strengths of 

a mixed model is its ability to provide insights into associations with longitudinal change in 

the model.  Individual change trajectories could potentially be examined for common 

characteristics to see if certain traits are associated with rates of change in response to AI 

treatment, or perhaps why some women in the control group experienced a more rapid 

decline in MD than others.  

 
3. Methods to reliably and repeatably measure MD over time are required. This has been an 

ongoing issue for MD research, as well as clinical practice, since the inception of Wolfe’s 

MD categories.  Although this is not a new issue raised first by this thesis, this issue 

impacted upon the ability of this project to differentiate longitudinal change between the 

IBIS-II treatment groups. The clinically approved, fully automated volumetric density 

measurement tools (Volpara, Quantra) are the most likely candidates for immediate 

implementation to resolve this issue, as demonstrated for example by the VPD, AI and 

TAM project [33] .  However, these commercial methods require access to the raw 

mammographic digital data, which may not be possible to collect in many circumstances.  

Other techniques, e.g. [513], may also be useful for measurement of post-processed digital 

mammograms. 

 
4. Standardisation of the mammographic output of conventional (two-dimensional) 

mammography and three-dimensional breast tomography to assist with longitudinal 

assessment of breast density as a biomarker during clinical therapy for BC prevention and 

treatment.  Standardisation of the image output has other potential purposes as well, such as 

during MD stratification into higher risk and lower risk categories for risk assessment, and 

characterisation of longitudinal MD in specific groups of women (i.e. different risk factors 

for BC).  A naïve suggestion would be to retain a set of pre-processed images along with the 
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set of processed images used for clinical purposes.  Given that this would double the 

amount of storage space needed to save the electronic images, perhaps pre-processed 

images of (greatly) reduced resolution could be preserved as it might still be feasible to 

obtain adequate cross sectional and longitudinal MD information from lower quality 

images.  It is likely that removal of variable amounts of MD from mammographic images 

(as noted for the longitudinal images utilised in this thesis) adds to the inherent variability 

[519] of clinical (visual) assessments of MD.  Access to a consistent set of images 

(unaffected by the vagaries of digital post processing) may assist with accuracy of MD in 

clinical visual assessment, especially given the increasing requirements to report breast 

density (re: the legislation in the USA [520]). 

 
5. Elucidation of the earliest time/s of change in breast density in response to treatment, as 

well as the time at which the maximum rate of breast density change occurs to assist with 

characterisation of the early treatment response as a biomarker for treatment efficacy.  It is 

not known how quickly the dense tissues of the breast change in response to different 

stimuli such as hormonal treatments, pregnancy, cessation of breast feeding, and 

menopause.  It is plausible women who have a visible or —via some other assessment 

technique— detectable change in breast density three months after the start of endocrine 

treatment for BC prevention (or treatment) are at a lower risk of BC in comparison to 

women who do not have detectable changes in breast density at 6 or 12 months.  The 

rapidity and magnitude of the BD response might not only depend upon a woman’s age or 

menopausal status, but might also differ by the treatment given (e.g. AI, tamoxifen, 

chemotherapy) and other characteristics of the woman (such as number of children, duration 

of breast feeding, genetic composition).  Given that mammography is potentially harmful, 

use of non-ionising imaging techniques such as ultrasound, non-contrast MRI or other more 

novel approaches [521, 522] could be used to precisely characterise the short and long term 

breast tissue response to treatment and other stimuli. 
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9.2 Conclusion 
 

Whilst the information presented in this thesis provides insight into the longitudinal changes 

relative to controls experienced by high risk women who take anastrozole for BC prevention, 

these results were confounded by the technical changes in image acquisition which occurred 

during the IBIS-II trial.  The mammographic image acquisition and MD assessment issues 

posed for this analysis however, are likely representative of the issues facing most modern, 

retrospective projects to assess longitudinal MD, for example in response to AI treatment.  

Prospective collection of pre-processed digital images, had they been available for CMN IBIS-II 

trial participants from baseline, likely would have produced more reliable quantification of the 

effects of anastrozole on longitudinal MD.  Since the advent of xeromammography for breast 

imaging, ongoing improvements to and expansion of the techniques used to image breasts has 

led to changes to in routine clinical practice, therefore regular changes to the techniques and 

standards of practice are likely to continue.  This provides hope that consistent and reliable 

techniques may become widely available to adequately assess MD as a biomarker, such as 

during AI treatment for BC prevention.  

 

The small, but significant reduction in MD annual rate of change during the first year of therapy 

for anastrozole treated CMN IBIS-II participants relative to controls for participants undertaking 

film mammography provides an indication that MD may be a biomarker for AI clinical efficacy.    

Further research is required to ascertain the status MD as a biomarker for treatment with AI and 

other hormonal therapies.  

 



References 

382 

References 

 

1.  Australian Institute of Health and Welfare 2014 Cancer in Australia: an overview, 2014. 
2014. Cancer series no. 90. Cat. no. CAN 88. 

2.  World Health Organization. Global Health Observatory data repository.  [cited 2016 6 
September]; Available from: 
http://apps.who.int/gho/data/node.main.CODWORLD?lang=en. 

3.  DeVita, V.T. and E. Chu, A History of Cancer Chemotherapy. Cancer Research, 2008. 
68(21): p. 8643‐8653. 

4.  Chabner, B.A. and T.G. Roberts, Chemotherapy and the war on cancer. Nat Rev Cancer, 
2005. 5(1): p. 65‐72. 

5.  National Breast and Ovarian Cancer Centre (NBOCC), Breast cancer risk factors: a 
review of the evidence., Australian Government Department of Health and Ageing, 
Editor. 2009, NBOCC: Surry Hills, NSW. 

6.  Sherratt, M.J., J.C. McConnell, and C.H. Streuli, Raised mammographic density: 
causative mechanisms and biological consequences. Breast Cancer Res, 2016. 18(1): p. 
45. 

7.  Price, E.R., et al., The California breast density information group: a collaborative 
response to the issues of breast density, breast cancer risk, and breast density 
notification legislation. Radiology, 2013. 269(3): p. 887‐92. 

8.  Wolfe, J.N., Breast patterns as an index of risk for developing breast cancer. AJR Am J 
Roentgenol, 1976. 126(6): p. 1130‐7. 

9.  Egan, R.L. and R.C. Mosteller, Breast cancer mammography patterns. Cancer, 1977. 
40(5): p. 2087‐90. 

10.  Berg, W.A., Current Status of Supplemental Screening in Dense Breasts. Journal of 
Clinical Oncology, 2016. 34(16): p. 1840‐1843. 

11.  Melnikow, J., et al., U.S. Preventive Services Task Force Evidence Syntheses, formerly 
Systematic Evidence Reviews, in Supplemental Screening for Breast Cancer in Women 
With Dense Breasts: A Systematic Review for the U.S. Preventive Service Task Force. 
2016, Agency for Healthcare Research and Quality (US): Rockville (MD). 

12.  Cancer Prevention and Research Institute (Italy) Tailored Screening for Breast Cancer in 
Premenopausal Women (TBST), NCT02619123. 2018  [cited 2018 22 April 2018]; 
Available from: https://clinicaltrials.gov/ct2/show/NCT02619123. 

13.  UMC Utrecht Breast Cancer Screening With MRI in Women Aged 50‐75 Years With 
Extremely Dense Breast Tissue: the DENSE Trial, NCT01315015. 2018  [cited 2018 22 
April 2018]; Available from: clinicaltrials.gov/ct2/show/NCT01315015. 

14.  University of California (Davis) Assessing Breast Density's Value in Imaging ‐ A 
Comparative Effectiveness Study (BCSC‐ADVANCE), NCT02980848. 2018  [cited 2018 22 
April 2018]; Available from: clinicaltrials.gov/ct2/show/NCT02980848. 

15.  University of California (San Francisco) Women Informed to Screen Depending on 
Measures of Risk (Wisdom Study) (WISDOM),NCT02620852. 2018  [cited 2018 22 April 
2018]; Available from: clinicaltrials.gov/ct2/show/NCT02620852. 

16.  Cecchini, R.S., et al., Baseline mammographic breast density and the risk of invasive 
breast cancer in postmenopausal women participating in the NSABP study of tamoxifen 
and raloxifene (STAR). Cancer Prev Res (Phila), 2012. 5(11): p. 1321‐9. 

17.  Cuzick, J., et al., Tamoxifen‐induced reduction in mammographic density and breast 
cancer risk reduction: a nested case‐control study. J Natl Cancer Inst, 2011. 103(9): p. 
744‐52. 



References 

383 

18.  Kim, J., et al., Breast density change as a predictive surrogate for response to adjuvant 
endocrine therapy in hormone receptor positive breast cancer. Breast Cancer Res, 
2012. 14(4): p. R102. 

19.  DeFilippis, R.A., et al., CD36 repression activates a multicellular stromal program 
shared by high mammographic density and tumor tissues. Cancer Discov, 2012. 2(9): p. 
826‐39. 

20.  Sun, X., et al., CCL2‐driven inflammation increases mammary gland stromal density 
and cancer susceptibility in a transgenic mouse model. Breast Cancer Research, 2017. 
19(1): p. 4. 

21.  Luo, T., et al., Aspirin use and breast cancer risk: a meta‐analysis. Breast Cancer Res 
Treat, 2012. 131(2): p. 581‐587. 

22.  Early Breast Cancer Trialists' Collaborative Group (EBCTG), Relevance of breast cancer 
hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient‐
level meta‐analysis of randomised trials. The Lancet, 2011. 378(9793): p. 771‐784. 

23.  Fabian, C.J., The what, why and how of aromatase inhibitors: hormonal agents for 
treatment and prevention of breast cancer. International Journal of Clinical Practice, 
2007. 61(12): p. 2051‐2063. 

24.  Buzdar, A.U., et al., Summary of aromatase inhibitor clinical trials in postmenopausal 
women with early breast cancer. Cancer, 2008. 112(3 Suppl): p. 700‐9. 

25.  Barnes, B.B., et al., Population attributable risk of invasive postmenopausal breast 
cancer and breast cancer subtypes for modifiable and non‐modifiable risk factors. 
Cancer Epidemiol, 2011. 35(4): p. 345‐52. 

26.  Cuzick, J., et al., Anastrozole for prevention of breast cancer in high‐risk 
postmenopausal women (IBIS‐II): an international, double‐blind, randomised placebo‐
controlled trial. Lancet, 2014. 383(9922): p. 1041‐8. 

27.  Goss, P.E., et al., Exemestane for Breast‐Cancer Prevention in Postmenopausal Women. 
New England Journal of Medicine, 2011. 364(25): p. 2381‐2391. 

28.  Vachon, C.M., et al., Pilot study of the impact of letrozole vs. placebo on breast density 
in women completing 5 years of tamoxifen. Breast, 2007. 16(2): p. 204‐10. 

29.  Cigler, T., et al., A randomized, placebo‐controlled trial (NCIC CTG MAP1) examining the 
effects of letrozole on mammographic breast density and other end organs in 
postmenopausal women. Breast Cancer Res Treat, 2010. 120(2): p. 427‐35. 

30.  Gatti‐Mays, M.E., et al., Exemestane Use in Postmenopausal Women at High Risk for 
Invasive Breast Cancer: Evaluating Biomarkers of Efficacy and Safety. Cancer 
Prevention Research, 2016. 9(3): p. 225‐233. 

31.  Henry, N.L., et al., Aromatase inhibitor‐induced modulation of breast density: clinical 
and genetic effects. Br J Cancer, 2013. 109(9): p. 2331‐2339. 

32.  van Nes, J.G.H., et al., Minimal impact of adjuvant exemestane or tamoxifen treatment 
on mammographic breast density in postmenopausal breast cancer patients: A Dutch 
TEAM trial analysis. Acta Oncologica, 2014. 0(0): p. 1‐12. 

33.  Engmann, N.J., et al., Longitudinal changes in volumetric breast density with tamoxifen 
and aromatase inhibitors. Cancer Epidemiology Biomarkers &amp; Prevention, 2017. 

34.  Are You Dense? Dr. Nancy Cappello's Story. 2008  [cited 2016 3 Nov 2016]; Available 
from: https://www.areyoudense.org/stories/nancy/. 

35.  Cappello, N.M., Decade of 'normal' mammography reports‐‐the happygram. J Am Coll 
Radiol, 2013. 10(12): p. 903‐8. 

36.  Weiss, R.E., Modelling Longitudinal Data. Springer Texts in Statistics. 2005, New York, 
NY USA: Springer. 

37.  Macias, H. and L. Hinck, Mammary gland development. Wiley Interdiscip Rev Dev Biol, 
2012. 1(4): p. 533‐57. 



References 

384 

38.  Pandya, S. and R.G. Moore, Breast development and anatomy. Clin Obstet Gynecol, 
2011. 54(1): p. 91‐5. 

39.  Ginsburg, O.M., L.J. Martin, and N.F. Boyd, Mammographic density, lobular involution, 
and risk of breast cancer. Br J Cancer, 2008. 99(9): p. 1369‐74. 

40.  Australian Institute of Health and Welfare & National Breast Cancer Centre 2006 
Breast cancer in Australia: an overview, 2006. 2006. Cancer series no. 34. cat. no. CAN 
29. 

41.  National Breast Cancer Centre and National Cancer Control Initiative, Clinical Practice 
Guidelines for Psychosocial Care of Adults with Cancer, National Breast Cancer Centre, 
Editor. 2003, National Breast Cancer Centre,: Camperdown, NSW. 

42.  National Breast Cancer Centre, Cancer ‐ How are you travelling? Understanding the 
emotional and social impact of cancer, N.B.C. Centre, Editor. 2007, National Breast 
Cancer Centre: Camperdown, NSW. 

43.  Gorey, K.M., et al., Breast cancer survival in ontario and california, 1998‐2006: 
socioeconomic inequity remains much greater in the United States. Ann Epidemiol, 
2009. 19(2): p. 121‐4. 

44.  Australian Institute of Health and Welfare & Cancer Australia 2012 Breast cancer in 
Australia: an overview. 2012. Cancer series no. 71. Cat. no. CAN 67., 1‐202. 

45.  Albrektsen, G., I. Heuch, and S.O. Thoresen, Histological type and grade of breast 
cancer tumors by parity, age at birth, and time since birth: a register‐based study in 
Norway. BMC Cancer, 2010. 10: p. 226. 

46.  Ijaduola, T.G. and E.B. Smith, Pattern of breast cancer among white‐American, African‐
American, and nonimmigrant west‐African women. J Natl Med Assoc, 1998. 90(9): p. 
547‐51. 

47.  Li, C.I., K.E. Malone, and J.R. Daling, Differences in breast cancer hormone receptor 
status and histology by race and ethnicity among women 50 years of age and older. 
Cancer Epidemiol Biomarkers Prev, 2002. 11(7): p. 601‐7. 

48.  Sakamoto, G. and H. Sugano, Pathology of breast cancer: present and prospect in 
Japan. Breast Cancer Res Treat, 1991. 18 Suppl 1: p. S81‐3. 

49.  Bhikoo, R., et al., Systematic review of breast cancer biology in developing countries 
(part 1): Africa, the middle East, eastern europe, Mexico, the Caribbean and South 
america. Cancers (Basel), 2011. 3(2): p. 2358‐81. 

50.  Ferlay, J., et al., Cancer incidence and mortality worldwide: sources, methods and 
major patterns in GLOBOCAN 2012. International Journal of Cancer, 2014: p. n/a‐n/a. 

51.  World Health Organization (WHO) World Health Statistics 2014. 2014. 
52.  Peters, D.H., et al., Poverty and Access to Health Care in Developing Countries. Annals 

of the New York Academy of Sciences, 2008. 1136(1): p. 161‐171. 
53.  Yip, C.H. and N.A. Taib, Breast health in developing countries. Climacteric, 2014: p. 1‐6. 
54.  Remennick, L., The Challenge of Early Breast Cancer Detection among Immigrant and 

Minority Women in Multicultural Societies. The Breast Journal, 2006. 12: p. S103‐S110. 
55.  Bhikoo, R., et al., Systematic review of breast cancer biology in developing countries 

(part 2): asian subcontinent and South East Asia. Cancers (Basel), 2011. 3(2): p. 2382‐
401. 

56.  Smith, R.A., et al., Breast Cancer in Limited‐Resource Countries: Early Detection and 
Access to Care. The Breast Journal, 2006. 12: p. S16‐S26. 

57.  Maher, D., N. Ford, and N. Unwin, Priorities for developing countries in the global 
response to non‐communicable diseases. Global Health, 2012. 8: p. 14. 

58.  Lancaster, G.A., M. Green, and S. Lane, Reducing bias in ecological studies: an 
evaluation of different methodologies. Journal of the Royal Statistical Society: Series A 
(Statistics in Society), 2006. 169(4): p. 681‐700. 



References 

385 

59.  Che, Y., et al., Comparison of survival rates between Chinese and Thai patients with 
breast cancer. Asian Pac J Cancer Prev, 2014. 15(15): p. 6029‐33. 

60.  Bigaard, J., et al., Breast cancer incidence by estrogen receptor status in Denmark from 
1996 to 2007. Breast Cancer Res Treat, 2012. 136(2): p. 559‐64. 

61.  McCormack, V.A., et al., International Consortium on Mammographic Density: 
Methodology and population diversity captured across 22 countries. Cancer 
Epidemiology, 2016. 40: p. 141‐151. 

62.  Australian Institute of Health and Welfare (AIHW), Australian Cancer Incidence and 
Mortality (ACIM) book: Breast Cancer, Australian Institute of Health and Welfare, 
Editor. 2017, AIHW: Canberra. 

63.  National Cancer Institute (NCI). NCI Dictionary of Cancer Terms. 2016; Available from: 
http://www.cancer.gov/publications/dictionaries/cancer‐terms. 

64.  Stoll, B.A., Hormonal management of advanced breast cancer. Br Med J, 1969. 2(5652): 
p. 293‐7. 

65.  National Breast and Ovarian Cancer Centre and Australian Cancer Network, The 
pathology reporting of breast cancer. A guide for pathologists, surgeons, radiologists 
and oncologists, National Breast and Ovarian Cancer Centre, Editor. 2008, NBOCC: 
Surry Hills, NSW. 

66.  Bertos, N.R. and M. Park, Breast cancer ‐ one term, many entities? J Clin Invest, 2011. 
121(10): p. 3789‐96. 

67.  Perou, C., et al., Molecular portraits of human breast tumours. Nature, 2000. 406: p. 
747 ‐ 752. 

68.  Lord, S.J., et al., Breast cancer risk and hormone receptor status in older women by 
parity, age of first birth, and breastfeeding: a case‐control study. Cancer Epidemiol 
Biomarkers Prev, 2008. 17(7): p. 1723‐30. 

69.  Barnes, B.B., et al., Population attributable risk of invasive postmenopausal breast 
cancer and breast cancer subtypes for modifiable and non‐modifiable risk factors. 
Cancer Epidemiol, 2010. 

70.  Althuis, M.D., et al., Etiology of hormone receptor‐defined breast cancer: a systematic 
review of the literature. Cancer Epidemiol Biomarkers Prev, 2004. 13(10): p. 1558‐68. 

71.  Collins, L., et al., Pathologic features and molecular phenotype by patient age in a large 
cohort of young women with breast cancer. Breast Cancer Res Treat, 2012. 131(3): p. 
1061‐1066. 

72.  Higgins, M.J. and V. Stearns, Pharmacogenetics of Endocrine Therapy for Breast 
Cancer. Annual Review of Medicine, 2011. 62(1): p. 281‐293. 

73.  Bombonati, A. and D.C. Sgroi, The molecular pathology of breast cancer progression. J 
Pathol, 2011. 223(2): p. 308‐18. 

74.  Graubard, B.I., A.N. Freedman, and M.H. Gail, Five‐year and lifetime risk of breast 
cancer among U.S. subpopulations: implications for magnetic resonance imaging 
screening. Cancer Epidemiol Biomarkers Prev, 2010. 19(10): p. 2430‐6. 

75.  Australian Institute of Health and Welfare & National Breast Cancer Centre 2006 
Breast cancer in Australia: an overview, 2009. 2009. Cancer series no. 50. Cat. no. CAN 
46. 

76.  Wooster, R. and B.L. Weber, Breast and Ovarian Cancer. New England Journal of 
Medicine, 2003. 348(23): p. 2339‐2347. 

77.  Nolan, E., et al., RANK ligand as a potential target for breast cancer prevention in 
BRCA1‐mutation carriers. Nat Med, 2016. 22(8): p. 933‐9. 

78.  Islami, F., et al., Breastfeeding and breast cancer risk by receptor status‐‐a systematic 
review and meta‐analysis. Ann Oncol, 2015. 26(12): p. 2398‐407. 

79.  Manrique Tejedor, J., M.I. Figuerol Caldero, and A. Cuellar De Frutos, [BREASTFEEDING 
AS A METHOD OF BREAST CANCER PREVENTION]. Rev Enferm, 2015. 38(12): p. 32‐8. 



References 

386 

80.  Collaborative Group on Hormonal Factors in Breast Cancer, Breast cancer and 
breastfeeding: collaborative reanalysis of individual data from 47 epidemiological 
studies in 30 countries, including 50302 women with breast cancer and 96973 women 
without the disease. Lancet, 2002. 360(9328): p. 187‐95. 

81.  Russo, I.H. and J. Russo, Pregnancy‐induced changes in breast cancer risk. J Mammary 
Gland Biol Neoplasia, 2011. 16(3): p. 221‐33. 

82.  Kobayashi, S., et al., Reproductive history and breast cancer risk. Breast Cancer, 2012. 
19(4): p. 302‐8. 

83.  Lyons, T., P. Schedin, and V. Borges, Pregnancy and Breast Cancer: when They Collide. J 
Mammary Gland Biol Neoplasia, 2009. 14(2): p. 87‐98. 

84.  Russo, J., et al., Breast differentiation and its implication in cancer prevention. Clin 
Cancer Res, 2005. 11(2 Pt 2): p. 931s‐6s. 

85.  Pike, M., et al., 'Hormonal' risk factors, 'breast tissue age' and the age‐incidence of 
breast cancer. Nature, 1983. 303(5920): p. 767‐770. 

86.  Boyd, N.F., et al., Mammographic density. Breast Cancer Res, 2009. 11 Suppl 3: p. S4. 
87.  Russo, J., et al., The protective role of pregnancy in breast cancer. Breast Cancer Res, 

2005. 7(3): p. 131‐42. 
88.  Russo, J. and I.H. Russo, The role of estrogen in the initiation of breast cancer. J Steroid 

Biochem Mol Biol, 2006. 102(1‐5): p. 89‐96. 
89.  Howell, A., et al., Risk determination and prevention of breast cancer. Breast Cancer 

Res, 2014. 16(5): p. 446. 
90.  Wiechmann, L., et al., Presenting features of breast cancer differ by molecular subtype. 

Ann Surg Oncol, 2009. 16(10): p. 2705‐10. 
91.  ESHRE, C.W.G., Hormones and breast cancer. Hum Reprod Update, 2004. 10(4): p. 281‐

93. 
92.  Heldring, N., et al., Estrogen Receptors: How Do They Signal and What Are Their 

Targets. Physiol. Rev., 2007. 87(3): p. 905‐931. 
93.  Forbes, J.F., et al., Effect of anastrozole and tamoxifen as adjuvant treatment for early‐

stage breast cancer: 100‐month analysis of the ATAC trial. Lancet Oncol, 2008. 9(1): p. 
45‐53. 

94.  Sestak, I. and J. Cuzick, Preventive therapy for breast cancer. Curr Oncol Rep, 2012. 
14(6): p. 568‐73. 

95.  Strassmer‐Weippl, K. and P.E. Goss, Prevention of breast cancer using SERMs and 
aromatase inhibitors. J Mammary Gland Biol Neoplasia, 2003. 8(1): p. 5‐18. 

96.  Davies, C., et al., Long‐term effects of continuing adjuvant tamoxifen to 10 years versus 
stopping at 5 years after diagnosis of oestrogen receptor‐positive breast cancer: ATLAS, 
a randomised trial. The Lancet, 2013(0). 

97.  Vogel, V.G., The NSABP Study of Tamoxifen and Raloxifene (STAR) trial. Expert Rev 
Anticancer Ther, 2009. 9(1): p. 51‐60. 

98.  Early Breast Cancer Trialist's Collaborative Group (EBCTG), Aromatase inhibitors versus 
tamoxifen in early breast cancer: patient‐level meta‐analysis of the randomised trials. 
The Lancet, 2015. 386(10001): p. 1341‐1352. 

99.  Martino, S., et al., The role of selective estrogen receptor modulators in the prevention 
of breast cancer: comparison of the clinical trials. Oncologist, 2004. 9(2): p. 116‐25. 

100.  Ellis, A.J., et al., Selective estrogen receptor modulators in clinical practice: a safety 
overview. Expert Opin Drug Saf, 2015. 14(6): p. 921‐34. 

101.  Keogh, L., et al., Australian clinicians and chemoprevention for women at high familial 
risk for breast cancer. Hereditary Cancer in Clinical Practice, 2009. 7(1): p. 9. 

102.  Kaplan, C., et al., Willingness to use tamoxifen to prevent breast cancer among diverse 
women. Breast Cancer Res Treat, 2012: p. 1‐10. 



References 

387 

103.  Li, F., et al., The selective estrogen receptor modulators in breast cancer prevention. 
Cancer Chemother Pharmacol, 2016. 77(5): p. 895‐903. 

104.  Bambhroliya, A., M. Chavez‐MacGregor, and A.M. Brewster, Barriers to the Use of 
Breast Cancer Risk Reduction Therapies. J Natl Compr Canc Netw, 2015. 13(7): p. 927‐
35. 

105.  Fontein, D.B.Y., et al., Specific Adverse Events Predict Survival Benefit in Patients 
Treated With Tamoxifen or Aromatase Inhibitors: An International Tamoxifen 
Exemestane Adjuvant Multinational Trial Analysis. Journal of Clinical Oncology, 2013. 

106.  Cuzick, J., et al., Treatment‐emergent endocrine symptoms and the risk of breast 
cancer recurrence: a retrospective analysis of the ATAC trial. Lancet Oncol, 2008. 9(12): 
p. 1143‐8. 

107.  Liedke, P.E.R. and P.E. Goss, Aromatase inhibitors and musculoskeletal adverse events. 
Lancet Oncol, 2011(0). 

108.  Mieog, J.S., et al., Carpal tunnel syndrome and musculoskeletal symptoms in 
postmenopausal women with early breast cancer treated with exemestane or 
tamoxifen after 2‐3 years of tamoxifen: a retrospective analysis of the Intergroup 
Exemestane Study. Lancet Oncol, 2012. 13(4): p. 420‐32. 

109.  Waltman, N.L., et al., Vitamin D insufficiency and musculoskeletal symptoms in breast 
cancer survivors on aromatase inhibitor therapy. Cancer Nurs, 2009. 32(2): p. 143‐50. 

110.  Napoli, N., et al., High prevalence of low vitamin D and musculoskeletal complaints in 
women with breast cancer. Breast J, 2010. 16(6): p. 609‐16. 

111.  Russo, J., G.A. Balogh, and I.H. Russo, Full‐term pregnancy induces a specific genomic 
signature in the human breast. Cancer Epidemiol Biomarkers Prev, 2008. 17(1): p. 51‐
66. 

112.  Cuzick, J., Chemoprevention of breast cancer. Breast Cancer, 2008. 15(1): p. 10‐6. 
113.  Kumar, P. and R. Aggarwal, An overview of triple‐negative breast cancer. Arch Gynecol 

Obstet, 2016. 293(2): p. 247‐69. 
114.  Newman, L.A., et al., The 2014 Society of Surgical Oncology Susan G. Komen for the 

Cure Symposium: triple‐negative breast cancer. Ann Surg Oncol, 2015. 22(3): p. 874‐82. 
115.  Murphy, R.A., et al., Beyond breast cancer: mammographic features and mortality risk 

in a population of healthy women. PLoS One, 2013. 8(10): p. e78722. 
116.  American College of Radiology, Breast imaging reporting and data system (BI‐RADS). 

Edition 1 ed. 1992, Reston, VA: American College of Radiology. 
117.  American College of Radiology ACR BI‐RADS Atlas Fifth Edition Atlas ‐ Mammography. 

II Reporting System. 2013. 
118.  American College of Radiology and Breast Cancer Surveillance Consortium (American 

College of Radiology and the Breast Cancer Surveillance Consortium) THE ACR BREAST 
IMAGING REPORTING AND DATA SYSTEM (BI‐RADS®). 2003. 

119.  American College of Radiology ACR BI‐RADS Atlas Fifth Edition Quick Reference. 2013. 
120.  Dehkordy, S.F. and R.C. Carlos, Dense breast legislation in the United States: state of 

the states. J Am Coll Radiol, 2013. 10(12): p. 899‐902. 
121.  Monticciolo, D.L., et al., Breast Cancer Screening in Women at Higher‐Than‐Average 

Risk: Recommendations From the ACR. J Am Coll Radiol, 2018. 15(3 Pt A): p. 408‐414. 
122.  Boyd, N.F., et al., Quantitative classification of mammographic densities and breast 

cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer 
Inst, 1995. 87(9): p. 670‐5. 

123.  Lipson, J., et al. Frequently Asked Questions About Breast Density, Breast Cancer Risk, 
and the Breast Density Notification Law in California: A Consensus Document. 2016  
2016]. 



References 

388 

124.  Li, H., et al., Comparative analysis of image‐based phenotypes of mammographic 
density and parenchymal patterns in distinguishing between BRCA1/2 cases, unilateral 
cancer cases, and controls. J Med Imaging (Bellingham), 2014. 1(3): p. 031009. 

125.  Torres‐Mejia, G., et al., Mammographic features and subsequent risk of breast cancer: 
a comparison of qualitative and quantitative evaluations in the Guernsey prospective 
studies. Cancer Epidemiol Biomarkers Prev, 2005. 14(5): p. 1052‐9. 

126.  Daye, D., et al., Mammographic parenchymal patterns as an imaging marker of 
endogenous hormonal exposure: a preliminary study in a high‐risk population. Acad 
Radiol, 2013. 20(5): p. 635‐46. 

127.  Haberle, L., et al., Characterizing mammographic images by using generic texture 
features. Breast Cancer Res, 2012. 14(2): p. R59. 

128.  Byng, J.W., et al., The quantitative analysis of mammographic densities. Phys Med Biol, 
1994. 39(10): p. 1629‐38. 

129.  Highnam, R., et al. Robust Breast Composition Measurement ‐ VolparaTM. in IWDM. 
2010. 

130.  John, B., QantraTM Volumetric Assessment for Digital Mammography, in QUANTRA DS 
USA Rev3:Layout 1, Hologic, Editor. 2009, Hologic. 

131.  Hartman, K., et al., Volumetric Assessment of Breast Tissue Composition from FFDM 
Images. IWDM 2008: Proceedings of the International Workshop on Digital 
Mammography, 2008. LNCS 5116: p. 33‐39. 

132.  Saftlas, A.F. and M. Szklo, Mammographic parenchymal patterns and breast cancer 
risk. Epidemiol Rev, 1987. 9: p. 146‐74. 

133.  Bland, K.I., et al., A clinicopathologic correlation of mammographic parenchymal 
patterns and associated risk factors for human mammary carcinoma. Ann Surg, 1982. 
195(5): p. 582‐94. 

134.  Goodwin, P.J. and N.F. Boyd, Mammographic parenchymal pattern and breast cancer 
risk: a critical appraisal of the evidence. Am J Epidemiol, 1988. 127(6): p. 1097‐108. 

135.  Boyd, N.F., et al., Mammographic patterns and breast cancer risk: methodologic 
standards and contradictory results. J Natl Cancer Inst, 1984. 72(6): p. 1253‐9. 

136.  McCormack, V.A. and I. dos Santos Silva, Breast density and parenchymal patterns as 
markers of breast cancer risk: a meta‐analysis. Cancer Epidemiol Biomarkers Prev, 
2006. 15(6): p. 1159‐69. 

137.  Boyd, N., et al., A longitudinal study of the effects of menopause on mammographic 
features. Cancer Epidemiol Biomarkers Prev, 2002. 11(10 Pt 1): p. 1048‐53. 

138.  Stomper, P.C., et al., Analysis of parenchymal density on mammograms in 1353 women 
25‐79 years old. AJR Am J Roentgenol, 1996. 167(5): p. 1261‐5. 

139.  Woolcott, C.G., et al., Mammographic density change with 1 year of aerobic exercise 
among postmenopausal women: a randomized controlled trial. Cancer Epidemiol 
Biomarkers Prev, 2010. 19(4): p. 1112‐21. 

140.  Buchanan, J.B., et al., Selected prognostic variables for mammographic parenchymal 
patterns. Cancer, 1981. 47(9): p. 2135‐7. 

141.  Hart, B.L., et al., Age and race related changes in mammographic parenchymal 
patterns. Cancer, 1989. 63(12): p. 2537‐9. 

142.  Flook, D., et al., Changes in Wolfe mammographic patterns with aging. Br J Radiol, 
1987. 60(713): p. 455‐6. 

143.  Brisson, J., et al., Mammographic features of the breast and breast cancer risk. Am J 
Epidemiol, 1982. 115(3): p. 428‐37. 

144.  Kelemen, L.E., et al., Age‐specific trends in mammographic density: the Minnesota 
Breast Cancer Family Study. Am J Epidemiol, 2008. 167(9): p. 1027‐36. 

145.  Maskarinec, G., et al., A longitudinal investigation of mammographic density: the 
multiethnic cohort. Cancer Epidemiol Biomarkers Prev, 2006. 15(4): p. 732‐9. 



References 

389 

146.  McCormack, V.A., et al., Comparison of a new and existing method of mammographic 
density measurement: intramethod reliability and associations with known risk factors. 
Cancer Epidemiol Biomarkers Prev, 2007. 16(6): p. 1148‐54. 

147.  McCormack, V.A., et al., Sex steroids, growth factors and mammographic density: a 
cross‐sectional study of UK postmenopausal Caucasian and Afro‐Caribbean women. 
Breast Cancer Res, 2009. 11(3): p. R38. 

148.  Ghosh, K., et al., Association between mammographic density and age‐related lobular 
involution of the breast. J Clin Oncol, 2010. 28(13): p. 2207‐12. 

149.  Byrne, C., et al., Mammographic features and breast cancer risk: effects with time, age, 
and menopause status. J Natl Cancer Inst, 1995. 87(21): p. 1622‐9. 

150.  Graham, S.J., et al., Quantitative correlation of breast tissue parameters using 
magnetic resonance and X‐ray mammography. Br J Cancer, 1996. 73(2): p. 162‐8. 

151.  Lee, N.A., et al., Fatty and fibroglandular tissue volumes in the breasts of women 20‐83 
years old: comparison of X‐ray mammography and computer‐assisted MR imaging. AJR 
Am J Roentgenol, 1997. 168(2): p. 501‐6. 

152.  Wei, J., et al., Correlation between mammographic density and volumetric 
fibroglandular tissue estimated on breast MR images. Med Phys, 2004. 31(4): p. 933‐
42. 

153.  Eng‐Wong, J., et al., Effect of raloxifene on mammographic density and breast 
magnetic resonance imaging in premenopausal women at increased risk for breast 
cancer. Cancer Epidemiol Biomarkers Prev, 2008. 17(7): p. 1696‐701. 

154.  Nie, K., et al., Development of a quantitative method for analysis of breast density 
based on three‐dimensional breast MRI. Med Phys, 2008. 35(12): p. 5253‐62. 

155.  Boyd, N., et al., Breast‐tissue composition and other risk factors for breast cancer in 
young women: a cross‐sectional study. Lancet Oncol, 2009. 10(6): p. 569‐80. 

156.  Thompson, D.J., et al., Assessing the usefulness of a novel MRI‐based breast density 
estimation algorithm in a cohort of women at high genetic risk of breast cancer: the UK 
MARIBS study. Breast Cancer Res, 2009. 11(6): p. R80. 

157.  Ko, E.S., et al., Background enhancement in breast MR: correlation with breast density 
in mammography and background echotexture in ultrasound. Eur J Radiol, 2011. 80(3): 
p. 719‐23. 

158.  Nie, K., et al., Quantitative analysis of breast parenchymal patterns using 3D 
fibroglandular tissues segmented based on MRI. Med Phys, 2010. 37(1): p. 217‐26. 

159.  Moon, W.K., et al., Comparative study of density analysis using automated whole 
breast ultrasound and MRI. Med Phys, 2011. 38(1): p. 382‐389. 

160.  Maskarinec, G., et al., Comparison of breast density measured by dual energy X‐ray 
absorptiometry with mammographic density among adult women in Hawaii. Cancer 
Epidemiology, 2011. 35(2): p. 188‐193. 

161.  Maskarinec, G., et al., A comparison of breast density measures between mothers and 
adolescent daughters. BMC Cancer, 2011. 11(330). 

162.  Novotny, R., et al., Puberty, body fat, and breast density in girls of several ethnic 
groups. American Journal of Human Biology, 2011. 23(3): p. 359‐365. 

163.  Shepherd, J.A., et al., Breast density assessment in adolescent girls using dual‐energy 
X‐ray absorptiometry: a feasibility study. Cancer Epidemiology, Biomarkers & 
Prevention, 2008. 17(7): p. 1709‐13. 

164.  Dorgan, J.F., et al., Height, adiposity and body fat distribution and breast density in 
young women. Breast Cancer Res, 2012. 14(4): p. R107. 

165.  Preston, D.L., et al., Solid Cancer Incidence in Atomic Bomb Survivors: 1958‐1998. 
Radiat Res, 2007. 168(1): p. 1‐64. 

166.  Boice, J.D., Jr., et al., Frequent Chest X‐Ray Fluoroscopy and Breast Cancer Incidence 
among Tuberculosis Patients in Massachusetts. Radiat Res, 1991. 125(2): p. 214‐222. 



References 

390 

167.  Ronckers, C.c.M., et al., Multiple Diagnostic X‐rays for Spine Deformities and Risk of 
Breast Cancer. Cancer Epidemiology Biomarkers & Prevention, 2008. 17(3): p. 605‐613. 

168.  Preston, D.L., et al., Radiation Effects on Breast Cancer Risk: A Pooled Analysis of Eight 
Cohorts. Radiat Res, 2002. 158(2): p. 220‐235. 

169.  Boyd, N.F., et al., Breast tissue composition and susceptibility to breast cancer. J Natl 
Cancer Inst, 2010. 102(16): p. 1224‐37. 

170.  Denholm, R., et al., Growth Trajectories, Breast Size, and Breast‐Tissue Composition in 
a British Pre‐Birth Cohort of Young Women. Am J Epidemiol, 2017. 

171.  Gaskins, A.J., et al., Dairy intake in relation to breast and pubertal development in 
Chilean girls. Am J Clin Nutr, 2017. 105(5): p. 1166‐1175. 

172.  Jung, S., et al., Dietary Fat Intake During Adolescence and Breast Density Among Young 
Women. Cancer Epidemiol Biomarkers Prev, 2016. 25(6): p. 918‐26. 

173.  Yaffe, M.J., Mammographic density. Measurement of mammographic density. Breast 
Cancer Res, 2008. 10(3): p. 209. 

174.  Boyd, N.F., et al., The relationship of anthropometric measures to radiological features 
of the breast in premenopausal women. Br J Cancer, 1998. 78(9): p. 1233‐8. 

175.  Sala, E., et al., High‐risk mammographic parenchymal patterns and anthropometric 
measures: a case‐control study. Br J Cancer, 1999. 81(7): p. 1257‐61. 

176.  McCormack, V.A., et al., Life‐course body size and perimenopausal mammographic 
parenchymal patterns in the MRC 1946 British birth cohort. Br J Cancer, 2003. 89(5): p. 
852‐9. 

177.  Haars, G., et al., Measurements of breast density: no ratio for a ratio. Cancer Epidemiol 
Biomarkers Prev, 2005. 14(11 Pt 1): p. 2634‐40. 

178.  Boyd, N.F., et al., Body size, mammographic density, and breast cancer risk. Cancer 
Epidemiol Biomarkers Prev, 2006. 15(11): p. 2086‐92. 

179.  Masala, G., et al., Dietary and lifestyle determinants of mammographic breast density. 
A longitudinal study in a Mediterranean population. Int J Cancer, 2006. 118(7): p. 1782‐
9. 

180.  Guthrie, J.R., et al., Mammographic densities during the menopausal transition: a 
longitudinal study of Australian‐born women. Menopause, 2007. 14(2): p. 208‐15. 

181.  Masala, G., et al., Physical activity and mammographic breast density in a 
Mediterranean population: the EPIC Florence longitudinal study. Int J Cancer, 2009. 
124(7): p. 1654‐61. 

182.  Sung, J., et al., High‐density lipoprotein cholesterol, obesity, and mammographic 
density in korean women: the healthy twin study. J Epidemiol, 2011. 21(1): p. 52‐60. 

183.  Tseng, M. and C. Byrne, Adiposity, adult weight gain and mammographic breast 
density in US Chinese women. Int J Cancer, 2011. 128(2): p. 418‐25. 

184.  Stone, J., et al., Using mammographic density to predict breast cancer risk: dense area 
or percent dense area. Breast Cancer Research, 2010. 12(6): p. R97. 

185.  Reeves, K.W., et al., Longitudinal association of anthropometry with mammographic 
breast density in the Study of Women's Health Across the Nation. Int J Cancer, 2009. 
124(5): p. 1169‐77. 

186.  Lokate, M., et al., Mammographic density and breast cancer risk: the role of the fat 
surrounding the fibroglandular tissue. Breast Cancer Research, 2011. 13(5): p. R103. 

187.  Li, T., et al., The association of measured breast tissue characteristics with 
mammographic density and other risk factors for breast cancer. Cancer Epidemiol 
Biomarkers Prev, 2005. 14(2): p. 343‐9. 

188.  McCormack, V.A., et al., Ethnic variations in mammographic density: a British 
multiethnic longitudinal study. Am J Epidemiol, 2008. 168(4): p. 412‐21. 

189.  Lokate, M., et al., Age‐related changes in mammographic density and breast cancer 
risk. Am J Epidemiol, 2013. 178(1): p. 101‐9. 



References 

391 

190.  Heng, D., et al., Risk factors for breast cancer associated with mammographic features 
in Singaporean chinese women. Cancer Epidemiol Biomarkers Prev, 2004. 13(11 Pt 1): 
p. 1751‐8. 

191.  Woolcott, C., et al., Mammographic density, parity and age at first birth, and risk of 
breast cancer: an analysis of four case–control studies. Breast Cancer Res Treat, 2012: 
p. 1‐9. 

192.  Stone, J., et al., Determinants of percentage and area measures of mammographic 
density. Am J Epidemiol, 2009. 170(12): p. 1571‐8. 

193.  Ramon y Cajal, T., et al., Mammographic density and breast cancer in women from 
high risk families. Breast Cancer Res, 2015. 17: p. 93. 

194.  Warwick, J., et al., Breast density and breast cancer risk factors in a high‐risk 
population. Breast, 2003. 12(1): p. 10‐6. 

195.  van Gils, C.H., et al., Parity and mammographic breast density in relation to breast 
cancer risk: indication of interaction. Eur J Cancer Prev, 2000. 9(2): p. 105‐11. 

196.  Grove, J.S., et al., Factors associated with mammographic pattern. Br J Radiol, 1985. 
58(685): p. 21‐5. 

197.  Dite, G.S., et al., Predictors of mammographic density: insights gained from a novel 
regression analysis of a twin study. Cancer Epidemiol Biomarkers Prev, 2008. 17(12): p. 
3474‐81. 

198.  Douglas, J.A., et al., Mammographic breast density‐‐evidence for genetic correlations 
with established breast cancer risk factors. Cancer Epidemiol Biomarkers Prev, 2008. 
17(12): p. 3509‐16. 

199.  Loehberg, C.R., et al., Assessment of mammographic density before and after first full‐
term pregnancy. Eur J Cancer Prev, 2010. 19(6): p. 405‐12. 

200.  Brisson, J., A.S. Morrison, and N. Khalid, Mammographic parenchymal features and 
breast cancer in the breast cancer detection demonstration project. J Natl Cancer Inst, 
1988. 80(19): p. 1534‐40. 

201.  Boyd, N.F., et al., Mammographic density and the risk and detection of breast cancer. 
N Engl J Med, 2007. 356(3): p. 227‐36. 

202.  Titus‐Ernstoff, L., et al., Breast cancer risk factors in relation to breast density (United 
States). Cancer Causes Control, 2006. 17(10): p. 1281‐90. 

203.  Vachon, C.M., et al., Association of mammographically defined percent breast density 
with epidemiologic risk factors for breast cancer (United States). Cancer Causes 
Control, 2000. 11(7): p. 653‐62. 

204.  Gram, I.T., E. Funkhouser, and L. Tabar, The Tabar classification of mammographic 
parenchymal patterns. Eur J Radiol, 1997. 24(2): p. 131‐6. 

205.  Lowery, J.T., et al., Complementary approaches to assessing risk factors for interval 
breast cancer. Cancer Causes Control, 2011. 22(1): p. 23‐31. 

206.  de Stavola, B.L., et al., Relationship of mammographic parenchymal patterns with 
breast cancer risk factors and risk of breast cancer in a prospective study. Int J 
Epidemiol, 1990. 19(2): p. 247‐54. 

207.  Frydenberg, H., et al., Insulin‐like growth factor‐1, growth hormone, and daily cycling 
estrogen are associated with mammographic density in premenopausal women. 
Cancer Causes Control, 2014. 25(7): p. 891‐903. 

208.  Louhiala, P., How tall is too tall? On the ethics of oestrogen treatment for tall girls. 
Journal of Medical Ethics, 2007. 33(1): p. 48‐50. 

209.  Brinks, S., Estrogen's history as a growth limiter, in LA Times. 2007: Los Angeles. 
210.  Varghese, J.S., et al., The heritability of mammographic breast density and circulating 

sex‐hormone levels: two independent breast cancer risk factors. Cancer Epidemiol 
Biomarkers Prev, 2012. 21(12): p. 2167‐75. 



References 

392 

211.  Brown, S.B. and S.E. Hankinson, Endogenous estrogens and the risk of breast, 
endometrial, and ovarian cancers. Steroids, 2015. 99(Pt A): p. 8‐10. 

212.  Hankinson, S.E. and A.H. Eliassen, Endogenous estrogen, testosterone and 
progesterone levels in relation to breast cancer risk. J Steroid Biochem Mol Biol, 2007. 
106(1‐5): p. 24‐30. 

213.  Lee, E., et al., Hormone metabolism genes and mammographic density in Singapore 
Chinese women. Cancer Epidemiol Biomarkers Prev, 2013. 22(5): p. 984‐6. 

214.  Bremnes, Y., et al., Endogenous sex hormones, prolactin and mammographic density in 
postmenopausal Norwegian women. Int J Cancer, 2007. 121(11): p. 2506‐11. 

215.  Greendale, G.A., et al., The association of endogenous sex steroids and sex steroid 
binding proteins with mammographic density: results from the Postmenopausal 
Estrogen/Progestin Interventions Mammographic Density Study. Am J Epidemiol, 2005. 
162(9): p. 826‐34. 

216.  Yong, M., et al., Associations between endogenous sex hormone levels and 
mammographic and bone densities in premenopausal women. Cancer Causes Control, 
2009. 20(7): p. 1039‐53. 

217.  Iversen, A., et al., Cyclic endogenous estrogen and progesterone vary by 
mammographic density phenotypes in premenopausal women. Eur J Cancer Prev, 
2016. 25(1): p. 9‐18. 

218.  Gierach, G.L., et al., Relationship of serum estrogens and metabolites with area and 
volume mammographic densities. Horm Cancer, 2015. 6(2‐3): p. 107‐19. 

219.  Tamimi, R.M., et al., Endogenous hormone levels, mammographic density, and 
subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst, 2007. 
99(15): p. 1178‐87. 

220.  Tamimi, R.M., et al., Endogenous sex hormone levels and mammographic density 
among postmenopausal women. Cancer Epidemiol Biomarkers Prev, 2005. 14(11 Pt 1): 
p. 2641‐7. 

221.  Warren, R., et al., Associations among mammographic density, circulating sex 
hormones, and polymorphisms in sex hormone metabolism genes in postmenopausal 
women. Cancer Epidemiol Biomarkers Prev, 2006. 15(8): p. 1502‐8. 

222.  Simpson, E.R., Aromatase: biologic relevance of tissue‐specific expression. Semin 
Reprod Med, 2004. 22(1): p. 11‐23. 

223.  Labrie, F., et al., Endocrine and Intracrine Sources of Androgens in Women: Inhibition of 
Breast Cancer and Other Roles of Androgens and Their Precursor 
Dehydroepiandrosterone. Endocr Rev, 2003. 24(2): p. 152‐182. 

224.  Simpson, E.R., et al., Estrogen‐‐the Good, the Bad, and the Unexpected. Endocr Rev, 
2005. 26(3): p. 322‐330. 

225.  Hong, C.C., et al., Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and 
oxidative stress: a cross‐sectional study. Breast Cancer Res, 2004. 6(4): p. R338‐51. 

226.  Riza, E., et al., Urinary estrogen metabolites and mammographic parenchymal patterns 
in postmenopausal women. Cancer Epidemiol Biomarkers Prev, 2001. 10(6): p. 627‐34. 

227.  Noh, J.J., et al., Mammographic densities and circulating hormones: a cross‐sectional 
study in premenopausal women. Breast, 2006. 15(1): p. 20‐8. 

228.  Wong, C.C.Y. and E. al., A longitudinal study of epigenetic variation in twins. 
Epigenetics, 2010. 5(6). 

229.  Ursin, G., et al., The relative importance of genetics and environment on 
mammographic density. Cancer Epidemiol Biomarkers Prev, 2009. 18(1): p. 102‐12. 

230.  Stone, J., et al., Mammographic density and candidate gene variants: a twins and 
sisters study. Cancer Epidemiol Biomarkers Prev, 2007. 16(7): p. 1479‐84. 

231.  Boyd, N.F., et al., Heritability of mammographic density, a risk factor for breast cancer. 
N Engl J Med, 2002. 347(12): p. 886‐94. 



References 

393 

232.  Kataoka, M., et al., Genetic models for the familial aggregation of mammographic 
breast density. Cancer Epidemiol Biomarkers Prev, 2009. 18(4): p. 1277‐84. 

233.  Martin, L.J., et al., Family history, mammographic density, and risk of breast cancer. 
Cancer Epidemiol Biomarkers Prev, 2010. 19(2): p. 456‐63. 

234.  Wolfe, J.N., A.F. Saftlas, and M. Salane, Mammographic parenchymal patterns and 
quantitative evaluation of mammographic densities: a case‐control study. AJR Am J 
Roentgenol, 1987. 148(6): p. 1087‐92. 

235.  Maskarinec, G. and L. Meng, A case‐control study of mammographic densities in 
Hawaii. Breast Cancer Res Treat, 2000. 63(2): p. 153‐61. 

236.  Maskarinec, G., et al., Ethnic and geographic differences in mammographic density and 
their association with breast cancer incidence. Breast Cancer Res Treat, 2007. 104(1): 
p. 47‐56. 

237.  Maskarinec, G., et al., Mammographic density and breast cancer risk by family history 
in women of white and Asian ancestry. Cancer Causes Control, 2015. 26(4): p. 621‐6. 

238.  del Carmen, M.G., et al., Mammographic breast density and race. AJR Am J 
Roentgenol, 2007. 188(4): p. 1147‐50. 

239.  Ursin, G., et al., Mammographic density and breast cancer in three ethnic groups. 
Cancer Epidemiol Biomarkers Prev, 2003. 12(4): p. 332‐8. 

240.  Turnbull, C., Genome‐wide association study identifies five new breast cancer 
susceptibility loci. Nature Genetics, 2010. 

241.  Hunter, D.J. and S.J. Chanock, Genome‐Wide Association Studies and "The Art of the 
Soluble". J Natl Cancer Inst, 2010. 102(12): p. 836‐837. 

242.  Varghese, J.S., et al., Mammographic Breast Density and Breast Cancer: Evidence of a 
Shared Genetic Basis. Cancer Res, 2012. 72(6): p. 1478‐1484. 

243.  Stone, J., et al., Novel Associations between Common Breast Cancer Susceptibility 
Variants and Risk‐Predicting Mammographic Density Measures. Cancer Res, 2015. 
75(12): p. 2457‐67. 

244.  Mitchell, G., et al., Mammographic density and breast cancer risk in BRCA1 and BRCA2 
mutation carriers. Cancer Res, 2006. 66(3): p. 1866‐72. 

245.  Passaperuma, K., et al., Is mammographic breast density a breast cancer risk factor in 
women with BRCA mutations? J Clin Oncol, 2010. 28(23): p. 3779‐83. 

246.  McTiernan, A., et al., Estrogen‐plus‐progestin use and mammographic density in 
postmenopausal women: Women's Health Initiative randomized trial. J Natl Cancer 
Inst, 2005. 97(18): p. 1366‐76. 

247.  Atkinson, C., et al., Mammographic patterns as a predictive biomarker of breast cancer 
risk: effect of tamoxifen. Cancer Epidemiol Biomarkers Prev, 1999. 8(10): p. 863‐6. 

248.  Brisson, J., et al., Tamoxifen and mammographic breast densities. Cancer Epidemiol 
Biomarkers Prev, 2000. 9(9): p. 911‐5. 

249.  Chow, C.K., et al., Effect of tamoxifen on mammographic density. Cancer Epidemiol 
Biomarkers Prev, 2000. 9(9): p. 917‐21. 

250.  Gao, J., The Effect of Tamoxifen on Mammographic Density in Women with High Risk of 
Breast Cancer, in Surgical Oncology. 2006, University of Newcastle: Newcastle. p. 224. 

251.  Spicer, D.V., et al., Changes in mammographic densities induced by a hormonal 
contraceptive designed to reduce breast cancer risk. J Natl Cancer Inst, 1994. 86(6): p. 
431‐6. 

252.  Tehranifar, P., et al., Reproductive and menstrual factors and mammographic density 
in African American, Caribbean, and white women. Cancer Causes & Control, 2011. 
22(4): p. 599‐610. 

253.  Boyd, N.F., et al., Mammographic density, response to hormones, and breast cancer 
risk. Journal of Clinical Oncology, 2011. 29(22): p. 2985‐2992. 



References 

394 

254.  Banks, E. and K. Canfell, Invited Commentary: Hormone Therapy Risks and Benefits‐
”The Women's Health Initiative Findings and the Postmenopausal Estrogen Timing 
Hypothesis. Am J Epidemiol, 2009. 170(1): p. 24‐28. 

255.  The Women’s Health Initiative Study Group, Design of the Women's Health Initiative 
clinical trial and observational study. The Women's Health Initiative Study Group. 
Control Clin Trials, 1998. 19(1): p. 61‐109. 

256.  Bland, K.I., et al., The effects of exogenous estrogen replacement therapy of the breast: 
breast cancer risk and mammographic parenchymal patterns. Cancer, 1980. 45(12): p. 
3027‐33. 

257.  Stomper, P.C., et al., Mammographic changes associated with postmenopausal 
hormone replacement therapy: a longitudinal study. Radiology, 1990. 174(2): p. 487‐
90. 

258.  McNicholas, M.M., et al., Pain and increased mammographic density in women 
receiving hormone replacement therapy: a prospective study. AJR Am J Roentgenol, 
1994. 163(2): p. 311‐5. 

259.  Persson, I., E. Thurfjell, and L. Holmberg, Effect of estrogen and estrogen‐progestin 
replacement regimens on mammographic breast parenchymal density. J Clin Oncol, 
1997. 15(10): p. 3201‐7. 

260.  Cyrlak, D. and C.H. Wong, Mammographic changes in postmenopausal women 
undergoing hormonal replacement therapy. AJR Am J Roentgenol, 1993. 161(6): p. 
1177‐83. 

261.  Rutter, C.M., et al., Changes in breast density associated with initiation, 
discontinuation, and continuing use of hormone replacement therapy. Jama, 2001. 
285(2): p. 171‐6. 

262.  Harvey, J.A., et al., Evaluating hormone therapy‐associated increases in breast density 
comparison between reported and simultaneous assignment of BI‐RADS categories, 
visual assessment, and quantitative analysis. Acad Radiol, 2005. 12(7): p. 853‐62. 

263.  Harvey, J., et al., Hormone replacement therapy and breast density changes. 
Climacteric, 2005. 8(2): p. 185‐92. 

264.  Sterns, E.E. and B. Zee, Mammographic density changes in perimenopausal and 
postmenopausal women: is effect of hormone replacement therapy predictable? Breast 
Cancer Res Treat, 2000. 59(2): p. 125‐32. 

265.  Kaufman, Z., et al., The mammographic parenchymal patterns of women on hormonal 
replacement therapy. Clin Radiol, 1991. 43(6): p. 389‐92. 

266.  Ursin, G., et al., Post‐treatment change in serum estrone predicts mammographic 
percent density changes in women who received combination estrogen and progestin 
in the Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. J Clin Oncol, 2004. 
22(14): p. 2842‐8. 

267.  Gambrell, R.D. and P.K. Natrajan, Moderate dosage estrogen‐androgen therapy 
improves continuation rates in postmenopausal women: impact of the WHI reports. 
Climacteric, 2006. 9(3): p. 224‐233. 

268.  Watson, J., L. Wise, and J. Green, Prescribing of hormone therapy for menopause, 
tibolone, and bisphosphonates in women in the UK between 1991 and 2005. European 
Journal of Clinical Pharmacology, 2007. 63(9): p. 843‐849. 

269.  Canfell, K., et al., Decrease in breast cancer incidence following a rapid fall in use of 
hormone replacement therapy in Australia. Med J Aust, 2008. 188(11): p. 641‐4. 

270.  Vankrunkelsven, P., et al., Reduction in hormone replacement therapy use and 
declining breast cancer incidence in the Belgian province of Limburg. Breast Cancer Res 
Treat, 2009. 118(2): p. 425‐32. 



References 

395 

271.  Verkooijen, H.M., et al., The incidence of breast cancer and changes in the use of 
hormone replacement therapy: a review of the evidence. Maturitas, 2009. 64(2): p. 80‐
5. 

272.  McTiernan, A., et al., Conjugated equine estrogen influence on mammographic density 
in postmenopausal women in a substudy of the women's health initiative randomized 
trial. J Clin Oncol, 2009. 27(36): p. 6135‐43. 

273.  Greendale, G.A., et al., Effects of estrogen and estrogen‐progestin on mammographic 
parenchymal density. Postmenopausal Estrogen/Progestin Interventions (PEPI) 
Investigators. Ann Intern Med, 1999. 130(4 Pt 1): p. 262‐9. 

274.  Greendale, G.A., et al., Postmenopausal hormone therapy and change in 
mammographic density. J Natl Cancer Inst, 2003. 95(1): p. 30‐7. 

275.  Vachon, C.M., et al., Case‐control study of increased mammographic breast density 
response to hormone replacement therapy. Cancer Epidemiol Biomarkers Prev, 2002. 
11(11): p. 1382‐8. 

276.  Crandall, C.J., et al., Increases in serum estrone sulfate level are associated with 
increased mammographic density during menopausal hormone therapy. Cancer 
Epidemiol Biomarkers Prev, 2008. 17(7): p. 1674‐81. 

277.  Nielsen, M., et al., Breast density changes associated with postmenopausal hormone 
therapy: post hoc radiologist‐ and computer‐based analyses. Menopause, 2010. 17(4): 
p. 772‐8. 

278.  Lee, E., et al., Progestogen levels, progesterone receptor gene polymorphisms, and 
mammographic density changes: results from the Postmenopausal Estrogen/Progestin 
Interventions Mammographic Density Study. Menopause, 2012. 19(3): p. 302‐10. 

279.  Freeman, M.E., et al., Prolactin: Structure, Function, and Regulation of Secretion. 
Physiological Reviews, 2000. 80(4): p. 1523‐1631. 

280.  Lowry, S.J., et al., Predictors of breast density change after hormone therapy cessation: 
results from a randomized trial. Cancer Epidemiol Biomarkers Prev, 2011. 20(10): p. 
2309‐12. 

281.  Ellingjord‐Dale, M., et al., Polymorphisms in hormone metabolism and growth factor 
genes and mammographic density in Norwegian postmenopausal hormone therapy 
users and non‐users. Breast Cancer Res, 2012. 14(5): p. R135. 

282.  Hayden, C., GnRH analogues: applications in assisted reproductive techniques. Eur J 
Endocrinol, 2008. 159(suppl_1): p. S17‐25. 

283.  Jonat, W., Luteinizing hormone‐releasing hormone analogues‐‐the rationale for 
adjuvant use in premenopausal women with early breast cancer. Br J Cancer, 1998. 78 
Suppl 4: p. 5‐8. 

284.  Gnant, M., et al., Endocrine therapy plus zoledronic acid in premenopausal breast 
cancer. N Engl J Med, 2009. 360(7): p. 679‐91. 

285.  Hackshaw, A., et al., Long‐term effectiveness of adjuvant goserelin in premenopausal 
women with early breast cancer. J Natl Cancer Inst, 2009. 101(5): p. 341‐9. 

286.  Goldhirsch, A., et al., Progress and promise: highlights of the international expert 
consensus on the primary therapy of early breast cancer 2007. Annals of Oncology, 
2007. 18(7): p. 1133‐1144. 

287.  Rabaglio, M., S. Aebi, and M. Castiglione‐Gertsch, Controversies of adjuvant endocrine 
treatment for breast cancer and recommendations of the 2007 St Gallen conference. 
Lancet Oncol, 2007. 8(10): p. 940‐9. 

288.  Regan, M.M., et al., Premenopausal endocrine‐responsive early breast cancer: who 
receives chemotherapy? Ann Oncol, 2008. 19(7): p. 1231‐41. 

289.  Ursin, G., et al., The detection of changes in mammographic densities. Cancer 
Epidemiol Biomarkers Prev, 1998. 7(1): p. 43‐7. 



References 

396 

290.  Gram, I.T., et al., Reversal of gonadotropin‐releasing hormone agonist induced 
reductions in mammographic densities on stopping treatment. Cancer Epidemiol 
Biomarkers Prev, 2001. 10(11): p. 1117‐20. 

291.  Weitzel, J.N., et al., Reduced mammographic density with use of a gonadotropin‐
releasing hormone agonist‐based chemoprevention regimen in BRCA1 carriers. Clin 
Cancer Res, 2007. 13(2 Pt 1): p. 654‐8. 

292.  Cuzick, J., et al., First results from the International Breast Cancer Intervention Study 
(IBIS‐I): a randomised prevention trial. Lancet, 2002. 360(9336): p. 817‐24. 

293.  Fisher, B., et al., Tamoxifen for prevention of breast cancer: report of the National 
Surgical Adjuvant Breast and Bowel Project P‐1 Study. J Natl Cancer Inst, 1998. 90(18): 
p. 1371‐88. 

294.  Nelson, H.D., et al., Systematic Review: Comparative Effectiveness of Medications to 
Reduce Risk for Primary Breast Cancer. Ann Intern Med, 2009. 151(10): p. 703‐W.235. 

295.  Lienart, V., et al., Effect of Preventive Hormonal Therapy on Breast Density: A 
Systematic Qualitative Review. ScientificWorldJournal, 2014. 2014: p. 942386. 

296.  Cuzick, J., et al., Tamoxifen and breast density in women at increased risk of breast 
cancer. J Natl Cancer Inst, 2004. 96(8): p. 621‐8. 

297.  Li, J., et al., Mammographic Density Reduction Is a Prognostic Marker of Response to 
Adjuvant Tamoxifen Therapy in Postmenopausal Patients With Breast Cancer. Journal 
of Clinical Oncology, 2013. 

298.  Nyante, S.J., et al., Prognostic Significance of Mammographic Density Change After 
Initiation of Tamoxifen for ER‐Positive Breast Cancer. Journal of the National Cancer 
Institute, 2015. 107(3). 

299.  Pearman, L., et al., The effects of raloxifene on mammographic breast density: a review 
of clinical trials. Menopause, 2010. 17(3): p. 654‐9. 

300.  Fabian, C.J., et al., Clinical Trial of Acolbifene in Premenopausal Women at High Risk for 
Breast Cancer. Cancer Prevention Research, 2015. 8(12): p. 1146‐1155. 

301.  Hind, D., et al., Hormonal therapies for early breast cancer: systematic review and 
economic evaluation. Health Technol Assess, 2007. 11(26): p. iii‐iv, ix‐xi, 1‐134. 

302.  Goss, P.E., et al., Exemestane versus anastrozole in postmenopausal women with early 
breast cancer: NCIC CTG MA.27‐‐a randomized controlled phase III trial. J Clin Oncol, 
2013. 31(11): p. 1398‐404. 

303.  Fabian, C.J., et al., Reduction in proliferation with six months of letrozole in women on 
hormone replacement therapy. Breast Cancer Res Treat, 2007. 106(1): p. 75‐84. 

304.  Mousa, N.A., et al., Aromatase inhibitors and mammographic breast density in 
postmenopausal women receiving hormone therapy. Menopause, 2008. 15(5): p. 875‐
84. 

305.  Liberati, A., et al., The PRISMA Statement for Reporting Systematic Reviews and Meta‐
Analyses of Studies That Evaluate Health Care Interventions: Explanation and 
Elaboration. PLoS Med, 2009. 6(7): p. e1000100. 

306.  Vernon, D., J. Jobling, and J. Toouli, Surgical versus endoscopic treatment of bile duct 
stones. The Cochrane Database of Systematic Reviews, 2001(4). 

307.  Ekpo, E.U., et al., Relationship Between Breast Density and Selective Estrogen‐Receptor 
Modulators, Aromatase Inhibitors, Physical Activity, and Diet: A Systematic Review. 
Integr Cancer Ther, 2016. 15(2): p. 127‐44. 

308.  Higgins J.P.T. and Green S. (Editors) Cochrane Handbook for Systematic Reviews of 
Interventions, Version 5.1.0 (online). 5.1.0 ed. Vol. Version 5.1.0 [updated March 
2011]. 2011, http://handbook.cochrane.org.: The Cochrane Collaboration. 

309.  Cuzick, J., et al., The effect of anastrozole, tamoxifen or a combination of both drugs on 
mammographic breast density in post menopausal women with breast cancer, 29th 
SABACS (2006), Abstract #5033. Breast Cancer Res Treat, 2006. 100 Suppl 1. 



References 

397 

310.  Prowell, T.M., et al., Changes in breast density and circulating estrogens in 
postmenopausal women receiving adjuvant anastrozole. Cancer Prev Res (Phila), 2011. 
4(12): p. 1993‐2001. 

311.  Smith, J., et al., A pilot study of letrozole for one year in women at enhanced risk of 
developing breast cancer: effects on mammographic density. Anticancer Res, 2012. 
32(4): p. 1327‐31. 

312.  Vachon, C.M., et al., Mammographic Breast Density Response to Aromatase Inhibition. 
Clinical Cancer Research, 2013. 

313.  Cigler, T., et al., A randomized, placebo‐controlled trial (NCIC CTG MAP.2) examining 
the effects of exemestane on mammographic breast density, bone density, markers of 
bone metabolism and serum lipid levels in postmenopausal women. Breast Cancer 
Research and Treatment, 2011. 

314.  Alliance for Clinical Trials in Oncology Changes in Breast Density and Blood Hormone 
Levels in Postmenopausal Women Receiving Anastrozole or Exemestane for Breast 
Cancer, NCT00516698. 2018  [cited 2018 22 April 2019]; Available from: 
clinicaltrials.gov/ct2/show/study/NCT00516698. 

315.  Seoul National University Hospital Breast Density Change Predicting Response to 
Adjuvant Aromatase Inhibitor (DEAR), NCT01765049. 2018  [cited 2018 22 April 2018]; 
ClinicalTrials.gov listing]. Available from: clinicaltrials.gov/ct2/show/NCT01765049. 

316.  Case Comprehensive Cancer Centre Changes in Breast Density and Breast Cancer Risk 
in Women With Breast Cancer and in Healthy Women, NCT00445445. 2018  [cited 
2018 22 April 2018]; Available from: clinicaltrials.gov/ct2/show/NCT00445445. 

317.  Destounis, S., et al., Qualitative Versus Quantitative Mammographic Breast Density 
Assessment: Applications for the US and Abroad. Diagnostics, 2017. 7(2): p. 30. 

318.  Hinton, C.P., et al., Mammographic parenchymal patterns: value as a predictor of 
hormone dependency and survival in breast cancer. AJR Am J Roentgenol, 1985. 
144(6): p. 1103‐7. 

319.  Hinton, C.P., et al., The relationship of background mammographic pattern to hormone 
dependency in breast cancer. Br J Surg, 1984. 71(5): p. 357‐9. 

320.  Conroy, S.M., et al., Mammographic density and hormone receptor expression in 
breast cancer: The Multiethnic Cohort Study. Cancer Epidemiol, 2011. 

321.  Antoni, S., et al., Is mammographic density differentially associated with breast cancer 
according to receptor status? A meta‐analysis. Breast Cancer Res Treat, 2013. 137(2): 
p. 337‐347. 

322.  Arora, N., et al., Impact of Breast Density on the Presenting Features of Malignancy. 
Ann Surg Oncol, 2010. 17(0): p. 211‐218. 

323.  Ma, H., et al., Is there a difference in the association between percent mammographic 
density and subtypes of breast cancer? Luminal A and triple‐negative breast cancer. 
Cancer Epidemiol Biomarkers Prev, 2009. 18(2): p. 479‐85. 

324.  Kurian, A., et al., Lifetime risks of specific breast cancer subtypes among women in four 
racial/ethnic groups. Breast Cancer Research, 2010. 12(6): p. R99. 

325.  Gierach, G.L., et al., Relationship Between Mammographic Density and Breast Cancer 
Death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst, 2012. 104(16): 
p. 1218‐1227. 

326.  Masarwah, A., et al., Very low mammographic breast density predicts poorer outcome 
in patients with invasive breast cancer. Eur Radiol, 2015. 25(7): p. 1875‐82. 

327.  Cil, T., et al., Mammographic density and the risk of breast cancer recurrence after 
breast‐conserving surgery. Cancer, 2009. 115(24): p. 5780‐7. 

328.  Maskarinec, G., et al., Mammographic density as a predictor of breast cancer survival: 
the Multiethnic Cohort. Breast Cancer Res, 2013. 15(1): p. R7. 



References 

398 

329.  Swann, C.A., et al., Mammographic density and physical assessment of the breast. AJR 
Am J Roentgenol, 1987. 148(3): p. 525‐6. 

330.  Woolcott, C.G., et al., Associations of overall and abdominal adiposity with area and 
volumetric mammographic measures among postmenopausal women. Int J Cancer, 
2010: p. n/a‐n/a. 

331.  Peters, T.M., et al., Physical activity and mammographic breast density in the EPIC‐
Norfolk cohort study. Am J Epidemiol, 2008. 167(5): p. 579‐85. 

332.  Brisson, J., et al., Diet, mammographic features of breast tissue, and breast cancer risk. 
Am J Epidemiol, 1989. 130(1): p. 14‐24. 

333.  Boyd, N.F., et al., Effects at two years of a low‐fat, high‐carbohydrate diet on radiologic 
features of the breast: results from a randomized trial. Canadian Diet and Breast 
Cancer Prevention Study Group. J Natl Cancer Inst, 1997. 89(7): p. 488‐96. 

334.  Tamburrini, A.L., et al., Associations between mammographic density and serum and 
dietary cholesterol. Breast Cancer Res Treat, 2011. 125(1): p. 181‐9. 

335.  Sprague, B.L., et al., Prevalence of mammographically dense breasts in the United 
States. J Natl Cancer Inst, 2014. 106(10). 

336.  Ellingjord‐Dale, M., et al., Breast cancer susceptibility variants and mammographic 
density phenotypes in norwegian postmenopausal women. Cancer Epidemiol 
Biomarkers Prev, 2014. 23(9): p. 1752‐63. 

337.  Trinh, T., et al., Background risk of breast cancer influences the association between 
alcohol consumption and mammographic density. Br J Cancer, 2015. 113(1): p. 159‐65. 

338.  Trinh, T., et al., Background risk of breast cancer and the association between physical 
activity and mammographic density. Breast Cancer Res, 2015. 17: p. 50. 

339.  Assi, V., et al., A case‐control study to assess the impact of mammographic density on 
breast cancer risk in women aged 40‐49 at intermediate familial risk. Int J Cancer, 
2015. 136(10): p. 2378‐87. 

340.  Rudolph, A., et al., A comprehensive evaluation of interaction between genetic variants 
and use of menopausal hormone therapy on mammographic density. Breast Cancer 
Res, 2015. 17: p. 110. 

341.  Li, J., et al., Breast cancer genetic risk profile is differentially associated with interval 
and screen‐detected breast cancers. Ann Oncol, 2015. 26(3): p. 517‐22. 

342.  Kerlikowske, K., et al., Breast Cancer Risk by Breast Density, Menopause, and 
Postmenopausal Hormone Therapy Use. J Clin Oncol, 2010. 28(24): p. 3830‐3837. 

343.  Tice, J.A., et al., Using clinical factors and mammographic breast density to estimate 
breast cancer risk: development and validation of a new predictive model. Ann Intern 
Med, 2008. 148(5): p. 337‐47. 

344.  Barlow, W.E., et al., Prospective breast cancer risk prediction model for women 
undergoing screening mammography. J Natl Cancer Inst, 2006. 98(17): p. 1204‐14. 

345.  Brentnall, A.R., et al., Mammographic density adds accuracy to both the Tyrer‐Cuzick 
and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer 
Res, 2015. 17(1): p. 147. 

346.  Gail, M.H., et al., Projecting individualized probabilities of developing breast cancer for 
white females who are being examined annually. J Natl Cancer Inst, 1989. 81(24): p. 
1879‐86. 

347.  Claus, E.B., N. Risch, and W.D. Thompson, Autosomal dominant inheritance of early‐
onset breast cancer. Implications for risk prediction. Cancer, 1994. 73(3): p. 643‐51. 

348.  Tyrer, J., S.W. Duffy, and J. Cuzick, A breast cancer prediction model incorporating 
familial and personal risk factors. Statistics in Medicine, 2004. 23(7): p. 1111‐1130. 

349.  National Cancer Institute (NCI). Breast Cancer Risk Assessment Tool. 2016  [cited 2016; 
Gail Model 2]. Available from: http://www.cancer.gov/bcrisktool/Default.aspx. 



References 

399 

350.  Jacobi, C.E., et al., Differences and similarities in breast cancer risk assessment models 
in clinical practice: which model to choose? Breast Cancer Res Treat, 2009. 115(2): p. 
381‐90. 

351.  Chen, J., et al., Projecting absolute invasive breast cancer risk in white women with a 
model that includes mammographic density. J Natl Cancer Inst, 2006. 98(17): p. 1215‐
26. 

352.  Mavaddat, N., et al., Incorporating tumour pathology information into breast cancer 
risk prediction algorithms. Breast Cancer Research, 2010. 12(3): p. 1‐12. 

353.  National Cancer Institute (NCI). About the (Breast Cancer Risk Assessment, Gail Model 
2) Tool. 2016  [cited 2016; Available from: http://www.cancer.gov/bcrisktool/about‐
tool.aspx. 

354.  Tice, J.A., et al., Mammographic breast density and the Gail model for breast cancer 
risk prediction in a screening population. Breast Cancer Res Treat, 2005. 94(2): p. 115‐
22. 

355.  Darabi, H., et al., Breast cancer risk prediction and individualised screening based on 
common genetic variation and breast density measurement. Breast Cancer Res, 2012. 
14(1): p. R25. 

356.  Warwick, J., et al., Mammographic breast density refines Tyrer‐Cuzick estimates of 
breast cancer risk in high‐risk women: findings from the placebo arm of the 
International Breast Cancer Intervention Study I. Breast Cancer Res, 2014. 16(5): p. 
451. 

357.  Wald, N.J., A.K. Hackshaw, and C.D. Frost, When can a risk factor be used as a 
worthwhile screening test? BMJ, 1999. 319(7224): p. 1562‐1565. 

358.  Cheddad, A., et al., Enhancement of mammographic density measures in breast cancer 
risk prediction. Cancer Epidemiol Biomarkers Prev, 2014. 23(7): p. 1314‐23. 

359.  Gierach, G.L., et al., Relationships between computer‐extracted mammographic texture 
pattern features and BRCA1/2 mutation status: a cross‐sectional study. Breast Cancer 
Res, 2014. 16(4): p. 424. 

360.  Caldwell, C.B., et al., Characterisation of mammographic parenchymal pattern by 
fractal dimension. Phys Med Biol, 1990. 35(2): p. 235‐47. 

361.  Gierach, G.L., et al., Emerging Concepts in Breast Cancer Risk Prediction. Curr Obstet 
Gynecol Rep, 2013. 2(1): p. 43‐52. 

362.  Lindstrom, S., et al., Common variants in ZNF365 are associated with both 
mammographic density and breast cancer risk. Nature Genetics, 2011. 43(3): p. 185‐7. 

363.  Vachon, C.M., et al., Common Breast Cancer Susceptibility Variants in LSP1 and 
RAD51L1 Are Associated with Mammographic Density Measures that Predict Breast 
Cancer Risk. Cancer Epidemiology Biomarkers & Prevention, 2012. 

364.  Hopper, J.L., Odds per Adjusted Standard Deviation: Comparing Strengths of 
Associations for Risk Factors Measured on Different Scales and Across Diseases and 
Populations. American Journal of Epidemiology, 2015. 182(10): p. 863‐867. 

365.  Fasching, P.A., et al., Breast Cancer Risk ‐ From Genetics to Molecular Understanding of 
Pathogenesis. Geburtshilfe Frauenheilkd, 2013. 73(12): p. 1228‐1235. 

366.  Byrne, C. and S. Spernak, What is breast density? Breast Cancer Online, 2005. 8(10): p. 
null‐null. 

367.  Cuzick, J., et al., Long‐term results of tamoxifen prophylaxis for breast cancer‐‐96‐
month follow‐up of the randomized IBIS‐I trial. J Natl Cancer Inst, 2007. 99(4): p. 272‐
82. 

368.  Forbes, J.F., Tokyo conference presentation. 2010: Tokyo. 
369.  Howell, A., et al., Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) 

trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet, 2005. 
365(9453): p. 60‐2. 



References 

400 

370.  Mitchell, M.N., Interpreting and Visualizing Regression Models Using Stata. 2012, 
College Station, Texas USA: Stata Press. 

371.  Snijders, T.A.B. and R.J. Bosker, Multilevel Analysis.  An introduction to basic and 
advanced multilevel modelling. 2000, London UK: SAGE Publications Ltd. 

372.  Chen, J.H., G. Gulsen, and M.Y. Su, Imaging Breast Density: Established and Emerging 
Modalities. Transl Oncol, 2015. 8(6): p. 435‐45. 

373.  Falcon, S., et al., Imaging Management of Breast Density, a Controversial Risk Factor 
for Breast Cancer. Cancer Control, 2017. 24(2): p. 125‐136. 

374.  Wolfe, J., A study of breast parenchyma by mammography in the normal woman and 
those with benign and malignant disease. Radiology, 1967. 89: p. 201‐5. 

375.  Wolfe, J.N., The prominent duct pattern as an indicator of cancer risk. Oncology, 1969. 
23(2): p. 149‐58. 

376.  Garrido Estepa, M., et al., Evaluation of mammographic density patterns: 
reproducibility and concordance among scales. BMC Cancer, 2010. 10(1): p. 485. 

377.  Gram, I.T., et al., Percentage density, Wolfe's and Tabar's mammographic patterns: 
agreement and association with risk factors for breast cancer. Breast Cancer Res, 2005. 
7(5): p. R854‐61. 

378.  Boehm, H.F., et al., Automated classification of breast parenchymal density: topologic 
analysis of x‐ray attenuation patterns depicted with digital mammography. AJR Am J 
Roentgenol, 2008. 191(6): p. W275‐82. 

379.  Mudigonda, N.R., R.M. Rangayyan, and J.E. Desautels, Detection of breast masses in 
mammograms by density slicing and texture flow‐field analysis. IEEE Trans Med 
Imaging, 2001. 20(12): p. 1215‐27. 

380.  Li, H., et al., Fractal analysis of mammographic parenchymal patterns in breast cancer 
risk assessment. Acad Radiol, 2007. 14(5): p. 513‐21. 

381.  Nielsen, M., et al., Mammographic texture resemblance generalizes as an independent 
risk factor for breast cancer. Breast Cancer Res, 2014. 16(2): p. R37. 

382.  Kontos, D., et al., Analysis of Parenchymal Texture with Digital Breast Tomosynthesis: 
Comparison with Digital Mammography and Implications for Cancer Risk Assessment. 
Radiology, 2011. 261(1): p. 80‐91. 

383.  Gastounioti, A., E.F. Conant, and D. Kontos, Beyond breast density: a review on the 
advancing role of parenchymal texture analysis in breast cancer risk assessment. 
Breast Cancer Res, 2016. 18(1): p. 91. 

384.  Boyd, N.F., et al., Relationship between mammographic and histological risk factors for 
breast cancer. J Natl Cancer Inst, 1992. 84(15): p. 1170‐9. 

385.  American College of Radiology, Breast imaging reporting and data system (BI‐RADS), 
4th Edition. 2003, Reston, VA: American College of Radiology. 

386.  Burnside, E.S., et al., The ACR BI‐RADS(®) Experience: Learning From History. Journal of 
the American College of Radiology : JACR, 2009. 6(12): p. 851‐860. 

387.  Kerlikowske, K., et al., Longitudinal measurement of clinical mammographic breast 
density to improve estimation of breast cancer risk. J Natl Cancer Inst, 2007. 99(5): p. 
386‐95. 

388.  Kerlikowske, K., et al., One versus Two Breast Density Measures to Predict 5‐ and 10‐
Year Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev, 2015. 24(6): p. 889‐97. 

389.  Warren, R., Hormones and mammographic breast density. Maturitas, 2004. 49(1): p. 
67‐78. 

390.  Byng, J.W. and et al., The quantitative analysis of mammographic densities. Phys Med 
Biol, 1994. 39(10): p. 1629. 

391.  Jeffreys, M., et al., Breast density: agreement of measures from film and digital image. 
Br J Radiol, 2003. 76(908): p. 561‐3. 



References 

401 

392.  Highnam, R., et al., Comparing measurements of breast density. Phys Med Biol, 2007. 
52(19): p. 5881‐95. 

393.  Byng, J.W., et al., Automated analysis of mammographic densities and breast 
carcinoma risk. Cancer, 1997. 80(1): p. 66‐74. 

394.  Gao, J., et al., Reproducibility of visual assessment on mammographic density. Breast 
Cancer Res Treat, 2008. 108(1): p. 121‐7. 

395.  Heine, J.J., et al., An automated approach for estimation of breast density. Cancer 
Epidemiol Biomarkers Prev, 2008. 17(11): p. 3090‐7. 

396.  Verheus, M., et al., IGF1, IGFBP1, and IGFBP3 genes and mammographic density: the 
Multiethnic Cohort. Int J Cancer, 2010. 127(5): p. 1115‐23. 

397.  Maskarinec, G., et al., Comparison of breast density measured by dual energy X‐ray 
absorptiometry with mammographic density among adult women in Hawaii. Cancer 
Epidemiol, 2010. 

398.  Stone, J., Personal communication during Cumulus training at the University of 
Melbourne. 2011. 

399.  Stone, J., et al., The detection of change in mammographic density. Cancer Epidemiol 
Biomarkers Prev, 2003. 12(7): p. 625‐30. 

400.  Sohn, G., et al., Reliability of the percent density in digital mammography with a semi‐
automated thresholding method. J Breast Cancer, 2014. 17(2): p. 174‐9. 

401.  Habel, L.A., et al., Case‐control study of mammographic density and breast cancer risk 
using processed digital mammograms. Breast Cancer Res, 2016. 18(1): p. 53. 

402.  Lillie, E.O., et al., Polymorphism in the androgen receptor and mammographic density 
in women taking and not taking estrogen and progestin therapy. Cancer Res, 2004. 
64(4): p. 1237‐41. 

403.  Lord, S.J., et al., Polymorphisms in genes involved in estrogen and progesterone 
metabolism and mammographic density changes in women randomized to 
postmenopausal hormone therapy: results from a pilot study. Breast Cancer Res, 2005. 
7(3): p. R336‐44. 

404.  Bremnes, Y., et al., Different types of postmenopausal hormone therapy and 
mammographic density in Norwegian women. Int J Cancer, 2007. 120(4): p. 880‐4. 

405.  Stuedal, A., et al., Does breast size modify the association between mammographic 
density and breast cancer risk? Cancer Epidemiol Biomarkers Prev, 2008. 17(3): p. 621‐
7. 

406.  Byng, J.W., et al., Automated analysis of mammographic densities. Phys Med Biol, 
1996. 41(5): p. 909‐23. 

407.  Martin, K.E., et al., Mammographic density measured with quantitative computer‐
aided method: comparison with radiologists' estimates and BI‐RADS categories. 
Radiology, 2006. 240(3): p. 656‐65. 

408.  Tagliafico, A., et al., Mammographic density estimation: comparison among BI‐RADS 
categories, a semi‐automated software and a fully automated one. Breast, 2009. 18(1): 
p. 35‐40. 

409.  Zhou, C., et al., Computerized image analysis: estimation of breast density on 
mammograms. Med Phys, 2001. 28(6): p. 1056‐69. 

410.  Li, J., et al., High‐throughput mammographic‐density measurement: a tool for risk 
prediction of breast cancer. Breast Cancer Res, 2012. 14(4): p. R114. 

411.  Nickson, C., et al., AutoDensity: an automated method to measure mammographic 
breast density that predicts breast cancer risk and screening outcomes. Breast Cancer 
Res, 2013. 15(5): p. R80. 

412.  Keller, B.M., et al., Breast density and parenchymal texture measures as potential risk 
factors for Estrogen‐Receptor positive breast cancer. Proc SPIE, 2014. 9035: p. 90351D. 



References 

402 

413.  Keller, B.M., et al., Preliminary evaluation of the publicly available Laboratory for 
Breast Radiodensity Assessment (LIBRA) software tool: comparison of fully automated 
area and volumetric density measures in a case–control study with digital 
mammography. Breast Cancer Research, 2015. 17(1): p. 117. 

414.  Eriksson, M., et al., A clinical model for identifying the short‐term risk of breast cancer. 
Breast Cancer Res, 2017. 19(1): p. 29. 

415.  Eriksson, M., et al., A comprehensive tool for measuring mammographic density 
changes over time. Breast Cancer Res Treat, 2018. 

416.  Kopans, D.B., Basic physics and doubts about relationship between mammographically 
determined tissue density and breast cancer risk. Radiology, 2008. 246(2): p. 348‐53. 

417.  Matakina Solutions. Volpara Density. 2017  [cited 2017 10 February 2017]; Available 
from: http://volparasolutions.com/our‐products/volparadensity/. 

418.  Hologic. Image Analytics. 2017  [cited 2017 10 February 2017]; Available from: 
http://www.hologic.com/products/imaging/mammography/image‐analytics. 

419.  Highnam, R. and M. Brady, Mammographic Image Analysis. 1999: Kluwer Academic 
Publishers, Dordrecht, The Netherlands. 

420.  Jeffreys, M., et al., Initial experiences of using an automated volumetric measure of 
breast density: the standard mammogram form. Br J Radiol, 2006. 79(941): p. 378‐82. 

421.  Ding, J., et al., Evaluating the effectiveness of using standard mammogram form to 
predict breast cancer risk: case‐control study. Cancer Epidemiol Biomarkers Prev, 2008. 
17(5): p. 1074‐81. 

422.  Aitken, Z., et al., Screen‐film mammographic density and breast cancer risk: a 
comparison of the volumetric standard mammogram form and the interactive 
threshold measurement methods. Cancer Epidemiol Biomarkers Prev, 2010. 19(2): p. 
418‐28. 

423.  Boyd, N., et al., Mammographic density and breast cancer risk: evaluation of a novel 
method of measuring breast tissue volumes. Cancer Epidemiol Biomarkers Prev, 2009. 
18(6): p. 1754‐62. 

424.  Chen, J.H., et al., Reduction of breast density following tamoxifen treatment evaluated 
by 3‐D MRI: preliminary study. Magn Reson Imaging, 2011. 29(1): p. 91‐8. 

425.  Ko, E.S., et al., Background enhancement in breast MR: Correlation with breast density 
in mammography and background echotexture in ultrasound. Eur J Radiol, 2010. 

426.  Moore, S., et al., Cost‐effectiveness of MRI compared to mammography for breast 
cancer screening in a high risk population. BMC Health Serv Res, 2009. 9(1): p. 9. 

427.  Brooks, J.D., et al., MRI background parenchymal enhancement, breast density and 
serum hormones in postmenopausal women. Int J Cancer, 2018. 

428.  Hennessey, S., et al., Bilateral symmetry of breast tissue composition by magnetic 
resonance in young women and adults. Cancer Causes Control, 2014. 

429.  O'Flynn, E.A.M., et al., Ultrasound Tomography Evaluation of Breast Density: A 
Comparison With Noncontrast Magnetic Resonance Imaging. Invest Radiol, 2017. 
52(6): p. 343‐348. 

430.  Klifa, C., et al., Magnetic resonance imaging for secondary assessment of breast density 
in a high‐risk cohort. Magn Reson Imaging, 2010. 28(1): p. 8‐15. 

431.  Kelly, K.M., et al., Breast cancer detection using automated whole breast ultrasound 
and mammography in radiographically dense breasts. Eur Radiol, 2010. 20(3): p. 734‐
42. 

432.  Chen, J.H., et al., Breast density analysis for whole breast ultrasound images. Med 
Phys, 2009. 36(11): p. 4933‐43. 

433.  Zanotel, M., et al., Automated breast ultrasound: basic principles and emerging clinical 
applications. Radiol Med, 2018. 123(1): p. 1‐12. 



References 

403 

434.  Glide, C., N. Duric, and P. Littrup, Novel approach to evaluating breast density utilizing 
ultrasound tomography. Med Phys, 2007. 34(2): p. 744‐53. 

435.  Duric, N., et al., Breast density measurements with ultrasound tomography: a 
comparison with film and digital mammography. Med Phys, 2013. 40(1): p. 013501. 

436.  Bakic, P.R., et al., Breast percent density: estimation on digital mammograms and 
central tomosynthesis projections. Radiology, 2009. 252(1): p. 40‐9. 

437.  Skaane, P., et al., Comparison of Digital Mammography Alone and Digital 
Mammography Plus Tomosynthesis in a Population‐based Screening Program. 
Radiology, 2013. 

438.  Rakowski, J.T. and M.J. Dennis, A comparison of reconstruction algorithms for C‐arm 
mammography tomosynthesis. Med Phys, 2006. 33(8): p. 3018‐3032. 

439.  Tagliafico, A., et al., Comparative estimation of percentage breast tissue density for 
digital mammography, digital breast tomosynthesis, and magnetic resonance imaging. 
Breast Cancer Res Treat, 2013. 138(1): p. 311‐7. 

440.  Tagliafico, A., et al., Mammographic density estimation: one‐to‐one comparison of 
digital mammography and digital breast tomosynthesis using fully automated 
software. Eur Radiol, 2012: p. 1‐6. 

441.  Vranjesevic, D., et al., Relationship between 18F‐FDG uptake and breast density in 
women with normal breast tissue. J Nucl Med, 2003. 44(8): p. 1238‐42. 

442.  Kuroki‐Suzuki, S., et al., Diagnosis of breast cancer with multidetector computed 
tomography: analysis of optimal delay time after contrast media injection. Clin 
Imaging, 2010. 34(1): p. 14‐9. 

443.  Shepherd, J.A., et al., Clinical comparison of a novel breast DXA technique to 
mammographic density. Med Phys, 2006. 33(5): p. 1490‐1498. 

444.  Wang, J., et al., Agreement of mammographic measures of volumetric breast density to 
MRI. PLoS One, 2013. 8(12): p. e81653. 

445.  Shepherd, J.A., et al., Novel use of single X‐Ray absorptiometry for measuring breast 
density. Technology in Cancer Research and Treatment, 2005. 4(2): p. 173‐182. 

446.  O'Connor, M.K., et al., Comparison of radiation exposure and associated radiation‐
induced cancer risks from mammography and molecular imaging of the breast. Med 
Phys, 2010. 37(12): p. 6187‐6198. 

447.  Shermis, R.B., et al., Molecular Breast Imaging in Breast Cancer Screening and Problem 
Solving. Radiographics, 2017. 37(5): p. 1309‐1606. 

448.  O'Sullivan, T., et al., Optical imaging correlates with magnetic resonance imaging 
breast density and reveals composition changes during neoadjuvant chemotherapy. 
Breast Cancer Research, 2013. 15(1): p. R14. 

449.  Ruiz, J., et al., Breast density quantification using structured‐light‐based diffuse optical 
tomography simulations. Appl Opt, 2017. 56(25): p. 7146‐7157. 

450.  Taroni, P., et al., Seven‐wavelength time‐resolved optical mammography extending 
beyond 1000 nm for breast collagen quantification. Opt Express, 2009. 17(18): p. 
15932‐46. 

451.  Jud, S.M., et al., Correlates of mammographic density in B‐mode ultrasound and real 
time elastography. Eur J Cancer Prev, 2011. 

452.  Hawley, J.R., et al., Quantification of breast stiffness using MR elastography at 3 Tesla 
with a soft sternal driver: A reproducibility study. J Magn Reson Imaging, 2017. 45(5): p. 
1379‐1384. 

453.  Maskarinec, G., et al., Bioimpedence to Assess Breast Density as a Risk Factor for 
Breast Cancer in Adult Women and Adolescent Girls. Asian Pac J Cancer Prev, 2016. 
17(1): p. 65‐71. 



References 

404 

454.  Greene, T. and E. al., Sub‐epithelial impedance: a new non‐invasive method to 
measure mammographic density. Cancer Research, 2009. 69(2 Supplement): p. 
Abstract 4075. 

455.  Gold, R.H., L.W. Bassett, and B.E. Widoff, Highlights from the history of 
mammography. RadioGraphics, 1990. 10(6): p. 1111‐1131. 

456.  Van Steen, A. and R. Van Tiggelen, Short history of mammography: a Belgian 
perspective. JBR BTR, 2007. 90(3): p. 151. 

457.  Hendrick, R.E., et al., Comparison of Acquisition Parameters and Breast Dose in Digital 
Mammography and Screen‐Film Mammography in the American College of Radiology 
Imaging Network Digital Mammographic Imaging Screening Trial. AJR. American 
journal of roentgenology, 2010. 194(2): p. 362‐369. 

458.  Dershaw, D.D., Status of mammography after the Digital Mammography Imaging 
Screening Trial: digital versus film. Breast J, 2006. 12(2): p. 99‐102. 

459.  Pisano, E.D., et al., Diagnostic accuracy of digital versus film mammography: 
exploratory analysis of selected population subgroups in DMIST. Radiology, 2008. 
246(2): p. 376‐83. 

460.  Ooms, E.A., et al., Mammography: interobserver variability in breast density 
assessment. Breast, 2007. 16(6): p. 568‐76. 

461.  Chang, R.F., et al., Three comparative approaches for breast density estimation in 
digital and screen film mammograms. Conf Proc IEEE Eng Med Biol Soc, 2006. 1: p. 
4853‐6. 

462.  Bland, J.M. and D.G. Altman, Statistical methods for assessing agreement between two 
methods of clinical measurement. Lancet, 1986. 1(8476): p. 307‐10. 

463.  Van Noorden, R., B. Maher, and R. Nuzzo, The top 100 papers. Nature, 2014. 514: p. 
550‐553. 

464.  Bland, J.M. and D.G. Altman, A note on the use of the intraclass correlation coefficient 
in the evaluation of agreement between two methods of measurement. Comput Biol 
Med, 1990. 20(5): p. 337‐40. 

465.  Lodder, M.C., et al., Reproducibility of bone mineral density measurement in daily 
practice. Ann Rheum Dis, 2004. 63(3): p. 285‐9. 

466.  Mello‐Thoms, C., et al., Understanding the Role of Correct Lesion Assessment in 
Radiologists’ Reporting of Breast Cancer, in Breast Imaging, H. Fujita, T. Hara, and C. 
Muramatsu, Editors. 2014, Springer International Publishing. p. 341‐347. 

467.  Ciatto, S., et al., Categorizing breast mammographic density: intra‐ and interobserver 
reproducibility of BI‐RADS density categories. Breast, 2005. 14(4): p. 269‐75. 

468.  Stone, J., et al., Predicting breast cancer risk using mammographic density 
measurements from both mammogram sides and views. Breast Cancer Res Treat, 
2010. 124(2): p. 551‐4. 

469.  Pettersson, A., et al., Mammographic Density Phenotypes and Risk of Breast Cancer: A 
Meta‐analysis. Journal of the National Cancer Institute, 2014. 106(5). 

470.  Cuzick, J., A Wilcoxon‐type test for trend. . Statistics in Medicine, 1985. 4: p. 87‐90. 
471.  Modugno, F., et al., Breast cancer risk factors and mammographic breast density in 

women over age 70. Breast Cancer Res Treat, 2006. 97(2): p. 157‐66. 
472.  Gold, E.B., et al., Factors Associated with Age at Natural Menopause in a Multiethnic 

Sample of Midlife Women. American Journal of Epidemiology, 2001. 153(9): p. 865‐
874. 

473.  Schoenaker, D.A., et al., Socioeconomic position, lifestyle factors and age at natural 
menopause: a systematic review and meta‐analyses of studies across six continents. 
International Journal of Epidemiology, 2014. 43(5): p. 1542‐1562. 

474.  Do, K.A., et al., Predictive factors of age at menopause in a large Australian twin study. 
Hum Biol, 1998. 70(6): p. 1073‐91. 



References 

405 

475.  Moorman, P.G., et al., Effect of Hysterectomy With Ovarian Preservation on Ovarian 
Function. Obstetrics & Gynecology, 2011. 118(6): p. 1271‐1279. 

476.  Lewis‐Beck, M.S., Multiple Regression, in Applied Regression. 1980, SAGE 
researchmethods. p. 48‐74. 

477.  Zhang, D., et al., Assessing model fit in joint models of longitudinal and survival data 
with applications to cancer clinical trials. Statistics in Medicine, 2014. 33(27): p. 4715‐
4733. 

478.  Jones, R.H., Bayesian information criterion for longitudinal and clustered data. 
Statistics in Medicine, 2011. 30(25): p. 3050‐3056. 

479.  Maskarinec, G., L. Meng, and G. Ursin, Ethnic differences in mammographic densities. 
Int J Epidemiol, 2001. 30(5): p. 959‐65. 

480.  Boone, J.M., et al., Scatter/primary in mammography: comprehensive results. Med 
Phys, 2000. 27(10): p. 2408‐16. 

481.  Hedegard, W. Mammoguide ‐ Mammography Techniques. 2017  [cited 2018 23 April 
2018]; Available from: https://www.mammoguide.com/mammo‐techniques.html. 

482.  Prentice, R.L., et al., Estrogen plus progestin therapy and breast cancer in recently 
postmenopausal women. Am J Epidemiol, 2008. 167(10): p. 1207‐16. 

483.  Butler, L.M., et al., Active, but not passive cigarette smoking was inversely associated 
with mammographic density. Cancer Causes Control, 2010. 21(2): p. 301‐11. 

484.  Gaudet, M.M., et al., Pooled analysis of active cigarette smoking and invasive breast 
cancer risk in 14 cohort studies. Int J Epidemiol, 2016. 

485.  Macacu, A., et al., Active and passive smoking and risk of breast cancer: a meta‐
analysis. Breast Cancer Research and Treatment, 2015. 154(2): p. 213‐224. 

486.  Astley, S.M., et al., A comparison of five methods of measuring mammographic 
density: a case‐control study. Breast Cancer Res, 2018. 20(1): p. 10. 

487.  McCormack, V.A., et al., Changes and tracking of mammographic density in relation to 
Pike's model of breast tissue aging: a UK longitudinal study. Int J Cancer, 2010. 127(2): 
p. 452‐61. 

488.  Verheus, M., et al., Premenopausal insulin‐like growth factor‐I serum levels and 
changes in breast density over menopause. Cancer Epidemiol Biomarkers Prev, 2007. 
16(3): p. 451‐7. 

489.  Gelman, A. and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical 
Models. 2006, New York: Cambridge University Press. 

490.  Singer, J.D. and J.B. Willett, Applied Longitudinal Data Analysis : Modelling change and 
event occurrence. 2003, New York: Oxford University Press. 

491.  Rabe‐Hesketh, S. and A. Skrondal, Multilevel and Longitudinal Modeling Using Stata. 
Vol. Volume I: Continuous Responses. 2012, College Station, Texas USA: Stata Press. 

492.  Diggle, P.J., K.‐Y. Liang, and S.L. Zeger, Analysis of Longitudinal Data. 1994, New York, 
NY USA: Oxford University Press. 

493.  Raftery, A.E., Bayesian Model Selection in Social Research. Sociological Methodology, 
1995. 25: p. 111‐163. 

494.  Chavance, M. and S. Escolano, Misspecification of the covariance structure in 
generalized linear mixed models. Statistical Methods in Medical Research, 2016. 25(2): 
p. 630‐643. 

495.  Boyd, N.F., et al., Mammographic density as a surrogate marker for the effects of 
hormone therapy on risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 2006. 
15(5): p. 961‐6. 

496.  Chlebowski, R.T., et al., Influence of estrogen plus progestin on breast cancer and 
mammography in healthy postmenopausal women: the Women's Health Initiative 
Randomized Trial. JAMA, 2003. 289(24): p. 3243‐53. 



References 

406 

497.  Anderson, G.L., et al., Effects of conjugated equine estrogen in postmenopausal women 
with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA, 
2004. 291(14): p. 1701‐12. 

498.  Bertrand, K.A., et al., Dense and nondense mammographic area and risk of breast 
cancer by age and tumor characteristics. Cancer Epidemiol Biomarkers Prev, 2015. 
24(5): p. 798‐809. 

499.  Maskarinec, G., et al., Mammographic density and breast cancer risk: the multiethnic 
cohort study. Am J Epidemiol, 2005. 162(8): p. 743‐52. 

500.  Yaghjyan, L., et al., Mammographic Breast Density and Subsequent Risk of Breast 
Cancer in Postmenopausal Women according to the Time Since the Mammogram. 
Cancer Epidemiology Biomarkers & Prevention, 2013. 

501.  Shepherd, J. and K. Kerlikowske, Do fatty breasts increase or decrease breast cancer 
risk? Breast Cancer Research, 2012. 14(1): p. 102. 

502.  Alexopoulos, E.C., Introduction to Multivariate Regression Analysis. Hippokratia, 2010. 
14(Suppl 1): p. 23‐28. 

503.  Robinson, G.K., That BLUP is a Good Thing: The Estimation of Random Effects. 
Statistical Science, 1991. 6(1): p. 15‐32. 

504.  Vachon, C.M., et al., Comparison of percent density from raw and processed full‐field 
digital mammography data. Breast Cancer Res, 2013. 15(1): p. R1. 

505.  Liang, K.‐Y. and S.L. Zeger, Longitudinal data analysis using generalized linear models. 
Biometrika, 1986. 73(1): p. 13‐22. 

506.  Fitzmaurice, G. and G. Molenberghs, Advances in longitudinal data analysis: An 
historical perspective, in Longitudinal Data Analysis, G. Fitzmaurice, et al., Editors. 
2008, CRC Press, Taylor & Francis Group: London. 

507.  Penn State University Online Courses. Lesson 12: Advanced Topics I ‐ Generalized 
Estimating Equations (GEE). 2017  [cited 2017 23Jan2017]; Available from: 
https://onlinecourses.science.psu.edu/stat504/book/export/html/179. 

508.  Harvey, J.A., et al., Reported Mammographic Density: Film‐Screen versus Digital 
Acquisition. Radiology, 2012. 

509.  Chlebowski, R.T., et al., Estrogen plus progestin and breast cancer detection by means 
of mammography and breast biopsy. Arch Intern Med, 2008. 168(4): p. 370‐7; quiz 
345. 

510.  Chlebowski, R.T., et al., Breast cancer after use of estrogen plus progestin in 
postmenopausal women. N Engl J Med, 2009. 360(6): p. 573‐87. 

511.  Pollan, M., et al., Validation of DM‐Scan, a computer‐assisted tool to assess 
mammographic density in full‐field digital mammograms. Springerplus, 2013. 2(1): p. 
242. 

512.  Cheddad, A., et al., Area and volumetric density estimation in processed full‐field digital 
mammograms for risk assessment of breast cancer. PLoS One, 2014. 9(10): p. e110690. 

513.  Busana, M.C., et al., Impact of type of full‐field digital image on mammographic density 
assessment and breast cancer risk estimation: a case‐control study. Breast Cancer 
Research, 2016. 18(1): p. 1‐12. 

514.  Gabrielson, M., et al., Cohort Profile: The Karolinska Mammography Project for Risk 
Prediction of Breast Cancer (KARMA). International Journal of Epidemiology, 2017. 
46(6): p. 1740‐1741g. 

515.  NSW Government, Multicultural NSW. 2016, NSW Government: 
http://multicultural.nsw.gov.au/. 

516.  Kerlikowske, K., et al., Comparative effectiveness of digital versus film‐screen 
mammography in community practice in the United States: a cohort study. Ann Intern 
Med, 2011. 155(8): p. 493‐502. 



References 

407 

517.  Perry, N., et al., The impact of digital mammography on screening a young cohort of 
women for breast cancer in an urban specialist breast unit. Eur Radiol, 2011. 21(4): p. 
676‐682. 

518.  Shawky, M.S., et al., Mammographic density: a potential monitoring biomarker for 
adjuvant and preventative breast cancer endocrine therapies. 2016. 2016. 

519.  Sprague, B.L., et al., Variation in Mammographic Breast Density Assessments Among 
Radiologists in Clinical Practice: A Multicenter Observational Study. Ann Intern Med, 
2016. 165(7): p. 457‐464. 

520.  Richman, I., et al., Breast Density Notification Legislation and Breast Cancer Stage at 
Diagnosis: Early Evidence from the SEER Registry. J Gen Intern Med, 2016. 

521.  Dean‐Ben, X.L., et al., Volumetric hand‐held optoacoustic angiography as a tool for 
real‐time screening of dense breast. J Biophotonics, 2016. 9(3): p. 253‐9. 

522.  Taroni, P., et al., Breast tissue composition and its dependence on demographic risk 
factors for breast cancer: non‐invasive assessment by time domain diffuse optical 
spectroscopy. PLoS One, 2015. 10(6): p. e0128941. 

523.  Bidgood, W.D., et al., Understanding and Using DICOM, the Data Interchange Standard 
for Biomedical Imaging. Journal of the American Medical Informatics Association, 
1997. 4(3): p. 199‐212. 

524.  Escott, E.J. and D. Rubinstein, Free DICOM Image Viewing and Processing Software for 
Your Desktop Computer: What’s Available and What It Can Do for You1. Radiographics, 
2003. 23(5): p. 1341‐1357. 

525.  Gentili, A., C.B. Chung, and T. Hughes, Use of the MIRC DICOM Service for Clinical Trials 
to Automatically Create Teaching File Cases from PACS1. Radiographics, 2007. 27(1): p. 
269‐275. 

526.  Varma, D.R., Free DICOM browsers. Indian Journal of Radiology and Imaging, 2008. 
18(1): p. 12‐16. 

527.  Rodríguez González, D., et al., An open source toolkit for medical imaging de‐
identification. Eur Radiol, 2010. 20(8): p. 1896‐1904. 

528.  McDowall, R.D., Software out of the box? When an application is referred to as 
commercial off the shelf (COTS) software, what does this really mean? Do you 
appreciate what you are buying and can you manage the risks involved? Here, we look 
at how the term COTS can be used and abused. Spectroscopy, 2012(11): p. 28. 

529.  Julian, C., T. Lucy, and J. Farr, Commercial‐Off‐The‐Shelf Selection Process. Engineering 
Management Journal, 2011. 23(2): p. 63‐71. 

530.  Avery, P., Calculating Life‐Cycle Cost. Engineered Systems, 2011. 28(9): p. 44‐48. 
531.  Puech, P.A., et al., DicomWorks: software for reviewing DICOM studies and promoting 

low‐cost teleradiology. J Digit Imaging, 2007. 20(2): p. 122‐30. 
532.  Branstetter, B.F.t., et al., SimpleDICOM suite: personal productivity tools for managing 

DICOM objects. Radiographics, 2007. 27(5): p. 1523‐30. 
533.  Ruby, T.S., et al., Is Breast Size a Predictor of Breast Cancer Risk or the Laterality of the 

Tumor? Cancer Causes & Control, 1993. 4(3): p. 203‐208. 
 



Appendices 

408 

10. Appendices 

A. Deidentification Software and Mammogram Deidentification Method 

A.1  Selection of mammogram digitisation and de-identification process 

A.1.1 Technical considerations  

Visually assessed PD is suitable for any type of mammograms (e.g. film-screen, digital), 

however use of computer software requires the mammograms to be in a digital (electronic) 

format.  In particular, x-ray films (film-screen mammograms) needed to be converted into a 

digital format before they could be used electronically.  This required access to an x-ray 

scanner.   

 

All mammograms for the project also required removal of directly identifying information (e.g. 

participant name, address) prior to density assessment.  Unlike digital mammograms, film-

screen mammograms contain areas of burned-in identifying information.  Whilst parts of images 

can be masked from within some MD measurement programs, the mammograms are not 

otherwise de-identified.  A quick, easy to use method for de-identifying digitised film-screen 

mammograms was required, especially for use with visual methods of density assessment.   

 

A.1.2 Scanner selection 

During the review of MD measurement techniques it was noted that some programs required 

film-screen mammograms to be scanned on a digitiser with an optical density of at least 4.0.  

Higher scanning optical densities provide better contrast within dark areas of the x-ray film — 

i.e. the scanner is able to capture darker tones (deeper blacks).  This is important for accurately 

capturing the breast edge (typically skin adjacent to fat) and hence important for measuring total 

breast area on a mammogram.   

 

The lowest cost digitisation option— photographing mammograms with a digital camera 

[249]— was unlikely to produce the high quality images needed for use with the MD 
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measurement programs.  The existing CMN Department of Surgical Oncology x-ray scanner, a 

Vidar Diagnostic ProPlus digitiser, scanned at a maximum of 3.85 optical density.  Access to 

another scanner with at least 4.0 optical density capability was required. 

 

Two types of x-ray scanners with ≥4.0 optical density were available in Australia: Array laser 

scanners (maximum 4.7 optical density); and the Vidar CADPro Advantage scanner, a CCD 

digitiser with maximum 4.2 optical density.  Although previously owned x-ray scanners are 

often an option in other markets, in Australia this posed potential difficulties for power 

compatibility (if of US/Canadian origin); safe shipment to Australia; as well as ongoing 

servicing, support and maintenance.  No previously owned x-ray scanners were found for 

purchase within Australia during 2011.    

 

Outsourcing of digitisation was considered.  The Australian Mammographic Density Research 

Facility at the University of Melbourne offers a paid service to digitise mammograms on an 

Array scanner.  BreastScreen NSW in Sydney owned two recently purchased Array scanners.  

However, because the ANZ BCTG also required digitisation capability for IBIS-II 

mammograms, in-house digitisation was preferred.   

 

The Array and Vidar systems differed in capabilities and cost.  Two vendors, Hologic and 

Medilink, offered scanning systems which incorporated an Array laser scanner.  The Hologic 

system (~$75,000) utilised a slightly older version of the Array laser scanner (maximum 4.4 

optical density), whilst the Medilink system (a more expensive system) included the newest 4.7 

optical density laser scanner.  Hologic also offered a Vidar CCD scanning system, with up to 

4.2 optical density capabilities (~$50,000).   

 

Batch film scanning capacity differed between the Array and Vidar scanners.  Array laser 

digitisers can scan batches of up to 100 films with an optional autofeeder accessory. The Vidar 
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CCD scanners had a 25 film capacity.  Although CCD scanners theoretically required less 

ongoing maintenance than laser scanners, laser scanners had a reputation for being more robust.   

 

Due to its higher optical density capability, sturdiness, auto-feed capacity, and similarity to the 

Array scanner utilised by the IBIS-II international coordinating centre in the UK, the decision 

was made to purchase an Array laser scanning system with an autofeeder accessory from 

Medilink.  Sufficient funding was obtained through various sources to purchase the Array 

scanning system in October 2011.  Medilink installed the scanner system in the Department of 

Surgical Oncology Research Office in the Newcastle BreastScreen facility in November 2011.   

 

A.1.3 De-identification method selection 

The mammograms used in this pilot project required removal of all participant identifying 

information (e.g. participant name, address) prior to density assessment.  To maintain 

compatibility between IBIS-II mammograms collected for this substudy and those for the 

international CRUK MD IBIS-II project, a standard scanning protocol developed by CRUK was 

used.  This generated images in DICOM (Digital Image and Communication In Medicine) 

format.  DICOM is an internationally recognised standard for the creation, storage and transfer 

of images [523].  Standardisation of the DICOM format is the keystone for compatibility of 

DICOM images amongst different software programs.   

 

Fully electronic mammograms in DICOM format are easily de-identified because the iden-

tifying information is contained in an electronic ‘header’ (text file) attached to the electronic 

image.  Many free and/or inexpensive programs were readily available to de-identify DICOM 

images via manipulation of the standard fields contained in the DICOM header [524-527].   

 

However, many popular image manipulation programs do not have native support for DICOM 

files.  DICOM files can be readily transformed into other imaging formats such as .jpg and .tiff 
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for use with these program, however this may introduce changes to the original image.  The 

information in the DICOM header is also lost during conversion to other image formats.   

 

Images containing burned-in identifying information, such as a typical digitised film-screen 

mammogram, were more difficult to de-identify.  The Array laser scanner used an extremely 

bright laser to digitise x-rays.  Because the light was very strong, identifiable information was 

still discernible on the digitised image even when covered with a sticky label prior to scanning.  

Post-scanning de-identification of digitised mammograms was necessary. 

 

The Picture Archiving and Communication System (PACS) clinical software included with the 

Array scanner appeared capable of masking areas during the scanning process.  This software 

was able to output files to a non-PACS location (e.g. a hard drive), but it did not generate a 

human-friendly file name. The masking capability did not appear to function when saving to a 

non-PACS location.     

 

The process used by CRUK to de-identify digitised film-screen mammograms was trialled.  

Adobe Photoshop CS5 has native compatibility with DICOM files.  Files are opened one at a 

time, the areas to be removed are selected and masked, and the de-identified image is saved. 

This is a time consuming process.  It is also very repetitive, and therefore suitable for 

automation by computer.  However, user input was required by the Photoshop program during 

the de-identification process, and therefore it could not be automated.   

 

An automated de-identification process was preferred for a number of reasons, including 

interest in undertaking a larger project (a linkage study between BreastScreen NSW and the 

NSW 45 and Up Study) which would generate thousands of images to de-identify.  During the 

approvals process for this large project it was discovered that all research data, including 

mammographic images, needed to be de-identified prior to access by the research team.  Hence 
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a quick and easy to use de-identification technique suitable for use by a competent assistant was 

required.   

 

Commonly used imaging software was tested for its image de-identification capacity.  Windows 

Paint is not compatible with DICOM files.  The free program IrfanView did not produce usable 

de-identified images.  ImageJ  (the Java-based image manipulation platform from the National 

Institutes of Health (NIH) in the USA) is able to automate repetitive transformation of images 

via an inbuilt programming language.  However, it does not have native support for DICOM 

files, and a suitable and reliable DICOM plugin for ImageJ was not found.   

 

Typically it is better to acquire a commercial off-the-shelf (COTS) product than develop 

bespoke software [528, 529].  COTS products generally provide lower total cost of ownership, 

even if an higher initial outlay is incurred [530].   Hence available programs which could de-

identify DICOM images with burnt-in areas of patient information with as little user input as 

possible were scrutinized.   

 

A.1.4 Review of software to de-identify DICOM images 

Software capable of quickly and easily batch de-identifying digital images in DICOM format 

was sought via general internet searches using terms including ‘DICOM anonymizer burned in’. 

Searches in PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) using similar terms were also 

undertaken.  Software was evaluated for its: 

 

 Ability to easily remove DICOM header information from digital mammograms, namely: 

o Batch removal of standard DICOM header attributes 

o Batch removal of custom DICOM attributes (e.g. details added by the manufacturer 

of the mammography machine which are not part of the DICOM standard) 

 Capacity to easily de-identify DICOM images with burned-in identifying areas for: 
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o A single mammogram 

o Multiple mammograms (i.e. batch anonymisation capable) 

 
More than 60 DICOM viewers and 20 de-identifiers/anonymisers were discovered.  A 

particularly thorough listing of DICOM software was available at dclunie.com.  Searches in 

PubMed found two useful, recent (<5 years old) articles discussing free DICOM viewers and 

anonymisers [526, 527]. Specifications for 34 programs were reviewed; 23 were not further 

investigated for a variety of reasons including cost and complexity (e.g. MatLab, Offis DICOM 

toolkit, Ruby DICOM).  Table 10-1, below, lists the results of this search.  Eleven programs 

were selected for evaluation of their ease of use and anonymisation capabilities; three programs 

satisfied at least two of the three evaluation criteria [Table 10-2, below].   

 

Evaluation Results: 

 Non-medical imaging software had difficulty with DICOM files.   
 
 

 Many of the open-source, free programs were Java based; these tended to require 

modification of the MS Windows PATH environment variable in order to run the Java 

program, and could be a bit difficult to use (e.g. multiple steps were required to clean the 

data, the software needed detailed configuration prior to use).     

 
 Three free but complex software packages offered a multitude of capabilities, such as 

DICOM network and file support and  integration with PACS systems, and DICOM header 

anonymisation: 

○ DICOM Confidential (University of Edinborough) 

○ DICOM Cleaner (PixelMed by Dr. David Clunie) 

○ MIRC DICOM software (Radiological Society of North America)  

 
 The DICOM Anonymizer & Masker, was relatively easy to use.  The resulting anonymised 

files were compatible with MD measurement software.  However the software had minor 
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user interface issues—it failed to run if files were already present in output directory, and 

the program had to be closed before it could be used again to anonymise files. 

 
 The SanteSoft DICOM Editor software was both simple to install and use, and the resulting 

de-identified (pseudo-anonymised) DICOM files were compatible with MD measurement 

software.  It was capable of batch anonymising burned-in image data. This program was 

selected to perform the core anonymisation activities for the project.   

 
 The Tudor DICOM Viewer easily removed data from custom fields in DICOM headers.  

This program was selected to remove any identifying information remaining in the DICOM 

header after de-identification with the SanteSoft DICOM Editor.
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Table 10‐1 Twenty‐three DICOM compatible programs which were not further investigated  

Name  Comments 

 Ruby DICOM  Command line interface only; both header and burned‐in anonymisation capable 

 MatLab  Computation, analysis and programming software with DICOM anonymisation capabilities 

 Offis DICOM Toolkit: ‘DCMTK’  DICOM server and viewer software, written in the C++ language 

 DVTk DICOM Toolkit  Large set of Java based tools including DICOM header anonymisation 

 Escape Medical Viewer: ‘EMV’  Commercial software with DICOM viewer (~$300) for both Windows and Apple computers 

 ezDICOM   DICOM viewer, capable of reading a wide variety of image formats  

 DicomWorks [531]  Free DICOM viewer with header anonymisation, but was no longer maintained by its developers 

 GearView QC from PACSGear  Part of commercial suite of PACS  software; can remove burned‐in data 

 K‐PACS: ‘DICOMAnonymize’  Server connection capable; commercial CE/FDA approved ‘iQ’ version and free version with DICOM anonymiser 

 OsiriX  Clinical commercial version is FDA approved; Apple computers only. Anonymisation capable. 

 SimpleDICOM (UPMC) [532]  Complementary program for 1st generation PACS; DICOM header anonymisation 

 Sha He’s DicomAnonymizer  DICOM header anonymisation for files including subfolders 

 DICOM Anonymizer Pro  Header anonymisation including private tags and subfolders; 49€ 

 Gdcm (‘Grassroots DICOM’)  C++ library for parsing/writing DICOM files;  has DICOM header de‐identification capabilities 

 dicom3tools  Debian command line program which can manipulate (anonymise) DICOM headers 

 OSIRIS [524]  DICOM viewer—simple header anonymisation and image cropping 

 Dicom2 converter  Command line image conversion tool (e.g. DICOM file to JPG format); capable of cropping images 

 PowerDicom  Part of a commercial suite of software; DICOM header batch anonymisation capable 

 DICOM Parser  Free program from commercial vendor; header anonymisation 

 ClearCanvas  FDA approved PACS workstation software with free personal edition; header anonymisation capable 

 iRad Mac OSX Dcm Viewer  Apple computer PACS workstation image viewing software 

 ANALYZE (Mayo Foundation)  3D image analysis and visualisation software with many complex capabilities 

 LONI Pipeline (UCLA)  Free workflow software for linking analyses; has graphical interface 
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Table 10‐2 Eleven programs tested for ease use regarding DICOM file anonymisation 

Name 

Specifications and evaluation criteria  

Comments 

N
ative D

IC
O
M
 su

p
p
o
rt 

M
ed

ical im
agin

g p
ro
gram

 

M
an
y cap

ab
ilities 

Easy to
 u
se 

C
o
m
m
ercial p

ro
gram

 

In
exp

en
sive (≤$

5
0
0
 U
SD

) 

1
a. Stan

d
ard

 h
e
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er rem

o
val 

1
b
.C
u
sto

m
 h
ead

er rem
o
val 

2
a. Sin

gle im
ages 

2
b
. B

atch
es o

f im
ages 

Photoshop CS5  √  √  √  √  Complex, expensive, no batch save 

IrfanView  √  √  √  Image detail lost 

ImageJ  √  √  √  √  Inconsistent DICOM plugins 

ShowCase5  √  √  √  √  √  √  √  Difficult user interface 

SanteSoft 
DICOM Editor 

√  √  √  √  √  √  √ 
 

√  √ 

Technological Ed. Institution, 
Athens, Greece 

Batch anonymisation capabilities 

DICOM 
Anonymizer & 
Masker 

√  √  √  √  √  √  √  √  √  √ 
Batch anonymises both header 
and burned‐in data $38USD; 
performance was inconsistent 

DICOM 
Confidential 
[527] 

√  √  √ 
   

√  √  √  √ 
 

University of Edinborough, UK 

Complex, extensible toolkit for 
teaching and research at multiple 
sites.  Anonymisation capabilities 

DICOM Cleaner  √  √  √ 
   

√  √  √  √ 
 

PixelMed (dclunie.com) 

Added a substantial amount of 
cleaning information to the 
DICOM header 

3TMRI (aka 
dcm2nn‐gui) 

√  √  √  √  √  √  √  √ 
   

Did not removal all private 
attributes. Software cannot 
remove burned in data 

TUDOR DICOM 
viewer 

√  √  √  √ 
 

√  √  √ 
   

Easy to use header anonymiser, 
but no burned‐in data removal 
capabilities 

RSNA MIRC 
DICOM 

√  √  √ 
 

√  √  √  √  √  √ 

Radiological Society of N.America.  
Complex suite of clinical trials and 
teaching files software for multiple 
sites. Easy to use header attribute 
anonymiser 
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A.2 Mammogram collection and de-identification 
 

Trial mammograms were collected for all available mammography episodes (visits).  The four 

standard mammographic Views (RCC, LCC, RMLO and LMLO) were collected for each 

mammography episode. 

 

A.2.1 Digital mammograms 

Electronic copies of CMN IBIS-II digital mammograms were collected either directly from the 

CMN trial coordinators or via the ANZ BCTG.  Electronic digital mammograms from the 

Calvary Mater were provided on DVDs for each participant.  The DVDs had patient-friendly 

software which automatically displayed the mammographic images stored on the disc when the 

DVD was loaded into a computer. 

 

The DICOM files were stored on the DVD as extensionless files (no *.dcm) with meaningless 

names: e.g. M000000, M100000.  The free software program, Bulk Rename Utility, was used to 

extract the files for each episode from the nested directory structure on the DVD, and save the 

files with a meaningful name and DICOM extension: participant ID + date + .dcm.  The 

mammography View for each file (i.e. RCC, LCC, RMLO, LMLO) was recorded later in a 

tracking file.  Fully electronic mammograms from the ANZ BCTG were supplied with a 

filename comprised of the IBIS-II participant ID, episode date and mammography View.  The 

Bulk Rename Utility was used to replace the IBIS-II ID with a randomly assigned project ID for 

this project.   

 

The DICOM headers of digital mammograms were de-identified using the Sante DICOM 

Editor’s batch de-identification utility.  Residual identifying information in custom DICOM 

attributes was removed using the Tudor DICOM Viewer’s batch de-identifier.   
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A.2.2 Film-screen and digitised copies of digital mammograms printed to 
film 

De-identification of film mammograms was more labour intensive.  The films were first 

digitised into electronic format on the Array scanner.  The first digitised film-screen 

mammograms collected for the project were de-identified using CRUK’s Photoshop procedure, 

however the majority of digitised film-screen mammograms were de-identified using the Sante 

DICOM Editor program.  Windowing (grey-level) differences in the Photoshop and Sante-

Editor de-identified mammograms later appeared to cause the selected MD measurement 

software program (Cumulus) to crash during batch reads because of ‘bad windowing’. 

  

A.2.3 Digitisation procedure for the Array laser scanner 

The Array laser scanner was provided with stand-alone (non-PACS) research software called 

Array View Lite.  The software was used to scan batches of mammograms using the Array 

scanner to output DICOM files with a meaningful name.  

 

An inbuilt feature of the Array View Lite software was utilised to automate systematic naming 

of the DICOM files output by the program.  Array View Lite automatically appended the 

filename of the first scanned film with a ‘1’.  Subsequent filenames were appended with 

increments of 1.  Hence mammograms sorted into RCC–LCC–RMLO–LMLO order had 1–2–

3–4 appended to their respective filenames for the first episode scanned, 5–6–7–8 appended for 

the second episode scanned, and so on.  The Bulk Rename Utility was later used to rename all 

digitised mammogram filenames appended with a 1, 5, 9... as ‘RCC’, 2, 6, 10... as ‘LCC’ and so 

forth. Episodes were scanned in date order, starting with the oldest episode to assist with 

subsequent renaming of the files.  

 

The Array View Lite software has an ‘autosize’ feature to sense and set the size of the 

mammogram during scanning, however results using this feature were inconsistent.  Hence the 
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size of the mammogram was always entered manually at the start of each batch scan.  Film-

screen mammograms were typically 18x24 cm in size, but could also be 20x25cm.  CR digital 

mammograms printed to film were usually 20x25cm in size.  All mammograms of the same size 

for a particular woman were sorted into RCC, LCC, RMLO, LMLO order by episode date, and 

digitised as a batch on the Array scanner.  Film-screen mammograms were scanned twice— 

once at 4.3 optical density for consistency with CRUK mammography scanning guidelines, and 

once at 4.7 optical density for the CMN IBIS-II MD and AI substudy.   

 

At the time of scanning, the Array View Lite software was utilised to add information such as 

episode date and study ID into the DICOM header of the digitised mammograms.  For episodes 

scanned one at a time, the DICOM date field was completed with the mammogram date, else the 

range of episode dates in a batch was entered into a free text field.  The optical density 

configured at the time of scanning was added to the DICOM header and the filename.  These 

DICOM fields provided secondary identifiers to the informative filename for each 

mammogram, to lessen the potential for later miss-assignment of mammograms to participants 

post de-identification. 

 

Scanning batches were limited in size not by the autofeeder capacity (100) of the Array scanner 

but by the amount of memory accessible by the scanning program (~1.6GB of RAM) on the 

Windows XP computer supplied with the system.  Scan settings such as the bit depth and pixel 

spacing determined the size of each mammogram in memory. The batch size was approximately 

50 mammograms when the Array scanner was set to the CRUK IBIS-II configuration of 12 bits 

and 50 micrometer (µ) pixel spacing. 

 

A.2.4 Deidentification of scanned mammograms using Sante DICOM Editor 

The burned-in patient identification details on film mammograms was located in approximately 

the same location for right and left mammograms of the same size and same modality (film-
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screen or digitised digital-printed-to-film).  The burned-in identification details for both RCC 

and RMLO View mammograms was located at the upper left side of the films; identifying 

information for LCC and LMLO View mammograms was located at the lower right of the 

films.  

 

Films of different sizes created different sized electronic files; typically files were 34MB (for 18 

x 24cm film-screen mammograms) or 56 MB (for 20 x 25cm film-screen mammograms) in size.  

Each file size had different Sante DICOM Editor X and Y coordinates for the burnt-in 

information.  Prior to batch de-identification, the electronic images were therefore organised 

into different file sizes for each type of mammogram (digitised film-screen or digitised digital 

printed-to-film), which were then divided into right or left Views.  These divisions by electronic 

file size and laterality permitted each group of files to be batch de-identified with the same set 

of Sante DICOM Editor X & Y coordinates. 

  

The X and Y coordinates to mask the burned-in information on each group of files was 

determined by using the scale displayed on a ruler within the Sante DICOM Editor. Twenty-five 

units on the ruler corresponded to 500 units in the program’s batch anonymisation ‘Set 

Rectangles’ entry screen.  The sorted files were batch de-identified in Sante Editor using the 

appropriate coordinates for the mammograms’ file size and laterality. 
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B. Differences in MD measurements, by View, Type and Version 

 

Background and Methods 

The expected substantial variation for repeated (longitudinal) Cumulus measurements of both 

film and digital mammograms in this project (±8%, ±10% respectively, as reported in Aim 2, 

Chapter 5 (Intra-observer and inter-method reliability)) is large compared to the expected 

longitudinal decrease in PD of 1% to 2% for treated participants relative to control participants.  

As described in the thesis Methods (Chapter 1), MD assessment of all four Views was 

undertaken to reduce the impact of this variability in a small dataset.  Typically, however, only a 

single view is utilised to assess PD.  A previous study noted slight differences in BC risk 

estimation when utilising one, two or four mammographic Views [468].  BA is generally greater 

on MLO compared to CC Views due to the different perspective used during imaging.  BA on 

left mammograms also tends to be 20 to 30 cm2 larger than BA for right side mammograms 

[533].  AA is likely to mirror the differences noted for BA.  PD and DA may also vary between 

right and left mammograms, as well as for CC vs MLO Views.  Hence different Views may not 

be interchangeable for longitudinal analysis of MD, and these differences may need to be taken 

into account during modelling. 

 
Within episode differences in percent density PD, DA, BA and AA were examined for each 

mammographic View (RCC, LCC, RMLO, LMLO), by both mammogram Type (film, digital) 

and mammogram Version (film, KE5.2, KE5.4, Fuji).  Comparisons were made between the 

right and left side for individual Views (RCC vs LCC, and RMLO vs LMLO), for CC vs MLO 

Views on the same side (RCC vs RMLO, LCC vs LMLO) as well as pairs of Views from each 

episode divided into right vs left mammograms, and CC vs MLO mammograms.  Mammograms 

from all 540 episodes from Collection 1 and Collection 2 were utilised in preliminary 

descriptive (graphical) comparisons and quantitative comparisons utilising Wilcoxon (matched-

pairs) signed-rank tests for MD differences due to laterality (right vs left), CC vs MLO Views, 

or different individual Views.  The MD parameters were also tested for normality by Type, 



Appendices 

422 

View and Version using tests for skewness and kurtosis as well as the Shapiro-Wilk test; 

normality was also assessed qualitatively (through graphical inspection). 

 
These preliminary paired comparisons treated each pair of observations as if they were 

independent, when in fact multiple pairs were typically contributed by each participant.  The 

paired differences were therefore likely to be more consistent within participants than between 

participants.  The pairs, however, were treated as independent samples because the variability of 

the subjective repeated measurements (>8% PD) made for each episode (i.e. on the four 

mammographic Views for each episode) was expected to be generally greater than between 

person variability (the difference between pairs of Views within episodes for different women).  

The number of episodes collected per participant also varied, hence unequal numbers of 

mammograms from each participant were used in the preliminary comparisons.  This effectively 

allowed data from some participants to influence the results more than others. 

 
A set of comparisons utilising the Wilcoxon signed rank test was also tabulated for composite 

measurements comprised of the average of both Right, both Left, both CC and both MLO 

Views from the ‘first’ episode (baseline or earliest episode, n=120) for each participant. In other 

words, MD measurements from both right mammograms from an episode were averaged to 

create a composite (average) measurement for the right side for that episode ((RCC+RMLO)/2), 

both left side mammograms were averaged to make a composite measurement for the left side 

for each episode ((LCC+LMLO)/2); the process was repeated for the CC and MLO Views 

((RCC+LCC)/2), (RMLO+LMLO)/2). This was done to avoid the issues of repeated 

measurements, and unequal numbers of episodes and mammograms, encountered during the 

preliminary comparisons. 
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Results 
 
The 2,130 Calvary Mater Newcastle IBIS-II mammograms assessed for density comprised 534 

RCC, 532 LCC, 534 RMLO and 530 LMLO mammograms (Table 10-3, below).  As described 

previously, the majority of mammograms were in electronic CR digital format.   

 
Table 10‐3 Number of mammograms by View (RCC, LCC, RMLO, LMLO) and Type (Film, Digital, DoF) 

View 
Mammogram Type  Total, Film and 

Digital Mammograms 

Digital Subtotals by Version* 

Film‐screen  Digital  KE52  KE54  Fuji 

RCC  61  473  534  121  150  198 
LCC  63  469  532  121  148  196 
RMLO  61  473 534 120 150  199
LMLO  63  467 530 120 148  195
Total  248  1882  2130  482  596  788 

* 16 digital mammograms of ‘Other’ Version are omitted 

 

Tests for normality for all mammograms using the skewness and kurtosis test, and the Shapiro-

Wilk test, for PD, DA, BA and AA yielded p-values <0.001.  Use of the Shapiro-Wilk test by 

mammogram View, and Type or Version for each MD measure yielded p-values <0.001.  The 

distribution is skewed for the distribution overall and for each sub group of each MD parameter, 

as is visible in Figure 10-1. 

 

Figure 10-2 reveals the trend observed in Figure 10-1for higher CC vs MLO for PD and DA, 

and lower BA and AA for CC vs MLO, continues within each mammogram Version in Figure 

10-2; the trend is not as pronounced however, in the less consistent film mammogram 

distributions for DA and AA (right column, Figure 10-2).  Across Versions, the trend for higher 

overall PD and DA for film compared to digital mammograms is present, whilst the reverse is 

true for BA and AA.  A trend for increasing PD and DA as well as BA and AA is seen for 

digital mammograms (KE52 to KE54 to Fuji); with the exception of the film to digital 

transition, this implies that all of the MD parameters tend to increase over time.  These trends 

mirror that seen for PD in Figure 6-1, as well as the trends noted for PD, DA, BA and AA in 

Figure 7-7. 
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Figure 10‐1 Distributions of PD, DA, BA and AA by View.   
Left column, box plots by View.  Right column, histograms by View.  As noted previously, PD and DA 
have a strong right skew, BA and AA are more normal.  Slight differences between CC and MLO views 
are present for all MD parameters; the difference is most pronounced for CC vs MLO views. PD and DA 
tend to be higher for CC compared to MLO Views, whilst the reverse is true for BA and AA.   
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Figure 10‐2 Distributions of PD, DA, BA and AA by View and mammogram Version  
Versions include film, KE5.2, KE5.4, and Fuji. 16 mammograms of Other Version are not shown. The 
trends noted in Figure 10‐1 between different Views are generally mirrored above within each Version. 

 
Table 10‐4 Difference between pairs of Views for PD, DA, BA and AA (overall, by Type & Version) 

Comparison
1
 

N
 

pairs 
Median 

difference2 
Diff/ 

median3 
Wilcox. 
p‐value 

Wilcoxon p‐values 

Film Digital  KE52  KE54 Fuji

Percent Density (%) 
  Overall difference

 all film and digital mammograms 
Within Type 
difference 

Within Version 
difference 

  RCC vs LCC  525  0.11 0.07% ns ns ns  ns  ns ns
RMLO vs LMLO  524  0.06 0.04% ns ns ns  ns  ns ns
RCC vs RMLO  532  1.10 7% *** * ***  ***  *** ***
LCC vs LMLO  530  1.40 9% *** ns ***  ***  *** ***

Dense Area (mm2)    Overall difference Within Type  Within Version
  RCC vs LCC  525  ‐36.5 1.5% ns ns ns  ns  ns ns

RMLO vs LMLO  524  ‐13.5 0.5% ns ns ns  ns  ns ns
RCC vs RMLO  532  76.0 3% *** ns ***  ns  ** ns
LCC vs LMLO  530  128.4 5% *** ns ***  ns  *** ***

Breast Area (mm
2
)    Overall difference Within Type  Within Version

  RCC vs LCC  525  ‐502 3% *** ns ***  *  *** ***
RMLO vs LMLO  524  ‐305 2% *** ns ***  *  ns *
RCC vs RMLO  532  ‐596 3% *** *** ***  ***  *** ***
LCC vs LMLO  530  ‐510 3% *** ** ***  ***  *** ***

Adipose Area (mm2)    Overall difference Within Type  Within Version
  RCC vs LCC  525  ‐402 3% ns * ***  ns  *** ***

RMLO vs LMLO  524  ‐264 2% ns ns ***  ns  ns **
RCC vs RMLO  532  ‐789 5% *** *** ***  ***  *** ***
LCC vs LMLO  530  ‐689 5% *** ** ***  ***  *** **

ns‐not significant; *<0.05; ** <0.01, ***<0.001; Wilcoxon’s signed‐rank test (paired data) 
1Number of mammogram pairs are 525, 524, 532 & 530 for View comparisons (i.e. RCC v LCC (525), etc.) 
2Median difference of second in pair subtracted from first, e.g. RCC – LCC 
3Median difference for each pair divided by the median of its MD parameter, Table 7‐3 (all mmgs) 

0 20 40 60 80 100
Percent Density (%)

Fuji

KE5.4

KE5.2

Film

Percent Density, by View and mammogram Version

0 5,000 10,000 15,000
Dense Area (mm2)

Fuji

KE5.4

KE5.2

Film

Dense Area, by View and mammogram Version

0 10,000 20,000 30,000 40,000 50,000
Breast Area (mm2)

Fuji

KE5.4

KE5.2

Film

Breast Area, by View and mammogram Version

RCC LCC RMLO LMLO

0 10,000 20,000 30,000 40,000 50,000
Adipose Area (mm2)

Fuji

KE5.4

KE5.2

Film

Adipose Area, by View and mammogram Version

RCC LCC RMLO LMLO



Appendices 

426 

Table 10‐5 Difference between pairs of Right vs Left, and CC vs MLO mammograms: PD, DA, BA and 
AA, overall (all mmgs), and by Type and mammogram Version 

Comparison1 
N 

pairs 
Median 
diff2 

Diff/med
(%)3 

Wilcoxon 
p‐value 

Wilcoxon p‐values 

Film  Digital  KE5.2  KE5.4  Fuji 

Percent Density (%)    Overall difference, all mammograms Within Type Within Version 
  Right vs Left  1049  0.07  0.45% ns ns ns ns ns  ns 

CC vs MLO  1062  1.22  8% *** ** *** *** ***  *** 
Dense Area (mm2)    Overall difference Within Type Within Version 
  Right vs Left  1049  ‐24.6  1% ns ns ns * ns  ns 

CC vs MLO  1062  107  4% *** ns *** ** ***  *** 
Breast Area (mm2)    Overall difference  
  Right vs Left  1049  ‐384  2% *** ns *** ** ***  *** 

CC vs MLO  1062  ‐542  3% *** *** *** *** ***  *** 
Adipose Area (mm2)    Overall difference Within Type Within Version 
  Right vs Left  1049  ‐343  2% ns * *** ns ***  *** 

CC vs MLO  1062  ‐738  5% *** *** *** *** ***  *** 

ns‐not significant; *<0.05; ** <0.01, ***<0.001; Wilcoxon’s paired signed‐rank test 
1Number of mammogram pairs are 1049 for Right v Left, 1062 pairs for CC v MLO 
2Median difference of second in pair subtracted from first, i.e. Right – Left or CC–MLO 
3Median difference for each pair divided by the median of its MD parameter Table 7‐3 (all mmgs) 
 
 
Table 10‐6 Difference between 120 first episodes, Right vs Left and CC vs MLO, for PD, DA, BA and AA 

Comparison1  N pairs 

Median
2

Median 
difference3 

Wilcoxon p‐valuea Right      
or CC 

Left        
or MLO 

Percent Density (%)     
  Right vs Left  119  14.9 16.4 ‐0.08 0.88 

CC vs MLO  120  16.7 14.6 0.72 0.0009 
Dense Area (mm2)     

  Right vs Left  119  2451 2538 ‐68 0.33 
CC vs MLO  120  2535 2437 48 0.41 

Breast Area (mm2)     
  Right vs Left  119  16590 17152 ‐399 0.002 

CC vs MLO  120  16527 17669 ‐788 <0.0001 
Adipose Area (mm

2
)     

  Right vs Left  119  13672 14198 ‐337 0.004 
CC vs MLO  120  13562 14288 ‐792 <0.0001 

a Wilcoxon’s paired signed‐rank test for comparison of average Right vs Left or CC vs MLO per episode 
1 Average of the Right and Left, or CC and MLO Views for each participant’s ‘first’ episode (baseline or 
earliest episode); left side mammograms not available for 1 participant for Right vs Left comparisons 
2 Median value for the Right, CC, Left or MLO average measurements for first episodes 
3 Median difference of second in pair subtracted from first, i.e. Right – Left or CC–MLO 
 

 

For PD and DA the differences in View for right vs left side were not significant for any 

comparison— Table 10-4, Table 10-5, and Table 10-6.  The right vs left side comparisons were 

not significant for AA when all mammograms were used (Table 10-4, Table 10-5, n=540 

episodes) however when Views from a single episode from each participant were compared 

(n=120 episodes), the AA right vs left (as well as CC vs MLO) comparisons differed 
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significantly— by about –3cm2 (right vs left, p=0.004) and –8cm2 (CC vs MLO, p<0.0001), 

Table 10-6. The within Type and within Version comparisons for right vs left side 

mammograms for PD and DA (Table 10-4, Table 10-5) reveal the within Type and Version 

comparisons for film, KE52, KE54 or Fuji were not significant, like their all mammograms 

counterparts.  However the within Type and within Version comparisons for AA were less 

consistent; with the exception of KE52 mammograms however, all other AA right vs left 

comparisons were significantly different.  The AA KE52 mammogram comparisons may be 

different from the other comparisons because of the more extensive post processing removal of 

dense tissue from KE52 mammograms (i.e. lower PD and DA and concomitantly slightly higher 

median AA, re: Figure 10-2) compared to other mammogram Versions.   

 

PD tended to be about 1% greater on CC compared to MLO mammograms (Table 10-4, Table 

10-5, Table 10-6), a difference which was significant for all comparisons except for the LCC vs 

LMLO comparison for film, Table 10-4.  DA tended to be higher (by 0.5 to 1 cm2) on CC 

compared to MLO mammograms (Table 10-4, Table 10-5, Table 10-6), a difference which was 

not significant when the comparison was restricted to first mammograms only (Table 10-6).  

 
The comparisons for BA showed that right breasts tend to be smaller than left breasts, and that 

BA on CC Views tends to be smaller than that for MLO Views. These differences were 

significant for comparisons of all mammograms (Table 10-4, Table 10-5) and first 

mammograms only (Table 10-6), and significantly different— except for film— for the 

comparisons by Type and Version (Table 10-4, Table 10-5).  The non-significance of the film 

only comparison for BA may have been due to the smaller sample size (63 episodes) for Film 

mammograms vs the CR Versions (123, 151 and 200 respectively for KE5.2, KE5.4 and Fuji). 

 

Discussion and Conclusion 
 
During modelling of BA using MD measurements from individual Views, both laterality (right 

vs left) and CC vs MLO Views may need to be taken into account due to the statistically 
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significant BA differences in right vs left, as well as CC vs MLO mammograms (Table 10-4, 

Table 10-5, and Table 10-6).  These results reflect the larger cross sectional breast area present 

on MLO compared to CC View mammograms. These results are also consistent with other 

reports in the literature, e.g. [533], which show that the left breast tends to be slightly greater in 

area on mammograms compared to the right breast.   

 

Although BA tends to be greater for left compared to right breasts, this did not translate to 

significantly more DA on left compared to right breasts, although right side DA was non-

significantly smaller than left side DA in all comparisons.  A larger sample size may therefore 

show a significant difference in DA between right and left mammograms.  Potentially, because 

the MLO View provides a greater cross sectional area of the breast (as reflected in the higher 

BA for MLO compared to CC Views), more DA might also be visible on the MLO compared to 

CC Views.  The dense tissues could potentially be more widely distributed across the greater 

BA of the MLO View, causing less superimposition of the dense tissues which is measured as 

increased DA.  Given, however, that the total dense volume of the breast is identical whether 

viewed from the CC or MLO perspective, DA might be the same for both CC and MLO Views. 

The results from this small sample of high risk women, conversely, imply slightly more DA 

(~0.5cm2 to 1cm2) is visible on CC compared to MLO Views. Although the DA difference for 

CC vs MLO Views was significant when compared for pairs of measurements of all 2130 

mammograms, the slight difference in DA for CC vs MLO Views was not significant when 120 

pairs of measurements were compared (1 pair for each of the 120 CMN IBIS-II participants) so 

the results may be spurious.  Further examination of DA measured CC vs MLO View 

mammograms from a larger population is needed to confirm this result. CC vs MLO Views, and 

right vs left side may need to be taken into account when modelling longitudinal DA using 

measurements from individual Views. Because of the small expected treatment effect predicted 

for anastrozole, even a small difference in DA due to differences in View could potentially 

affect longitudinal DA trends, hence measurements made on the CC vs MLO, as well as right vs 
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left sides may not be exchangeable during longitudinal modelling.  However, differences in DA 

were not analysed relative to the total DA present for each participant; the relative within 

participant DA difference for right vs left, and CC vs MLO Views are likely to be smaller than 

the variability of the measurements (for subjective measurement techniques).  Therefore 

substitution of one View for another, even if MD on the Views is slightly different, may not 

result in a different measurement. 

 

PD did not differ greatly (nor significantly) between the right and left sides; the difference 

between right and left mammogram was around 0.1%, e.g. Table 10-6.  PD differed 

significantly by about 1%, however, between measurements made on the CC compared to MLO 

Views.  As for DA, this difference in PD between CC and MLO Views, although small, may 

affect the results of longitudinal models.  Hence it is likely better to not substitute CC for MLO 

Views (or MLO for CC Views) during longitudinal modelling.  These results imply, however, 

as for DA very little average difference exists for PD between the right and left breasts, thus–

generally– longitudinal modelling is not likely to be greatly affected if CC and MLO Views are 

substituted for each other.  Given that some women are more greatly asymmetric than others in 

breast size [533] and the appearance of the dense tissues can differ between CC and MLO 

Views (noted during assessment of mammograms for this project), care may need to be taken 

during substitution of one View with another. 

 

AA may differ slightly more than PD between measurements made on the right and left side, 

e.g. 3 cm2, Table 10-5 and Table 10-6; the difference in right vs left AA was significant for 

measurements made on first mammograms only, Table 10-6.  The CC vs MLO comparisons for 

AA were significantly different; MLO measurements were approximately 7 to 8 cm2  larger on 

average than the CC measurements.  These results imply that both laterality (right vs left) and 

CC vs MLO Views may need to be taken into account when modelling AA longitudinally.   
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For the purposes of assessing differences in BC risk posed by differences in right, left, CC or 

MLO View mammograms, all of the MD differences noted in this analysis were small relative 

to total PD, DA, AA or BA.  For instance, PD differed on average by about 1% at most between 

Views (CC vs MLO) compared to the median baseline PD of 18% (Table 6-6), and DA by 

generally no more than 1cm2 relative to the baseline median DA of 28cm2 (2755 mm2, Table 

6-6).  Although MD for some women does differ markedly in appearance on different mammo-

graphic Views, these results suggest that on average, MD assessments made on any View are 

roughly equivalent to those made on other Views.  Therefore, the BC risk assessed on any 

View, or various combinations of individual Views are likely to be equivalent for most women.   

 

This analysis could be improved by examining the range of MD differences between Views for 

participants, to quantify the measures of central tendency (i.e. not just the median, but also Q1, 

Q3, the minimum and maximum) for the differences measured for PD, DA as well as AA and 

BA.  The results in Table 10-4 and Table 10-5 are problematic due to the use of repeated and 

unequal numbers of measurements made from the participants. This study was limited by the 

small number of women sampled (120).  The population sampled were all high risk, post-

menopausal women hence these results may not be generalisable to normal risk populations, 

and/or premenopausal populations.  The PD, DA and AA measurements were also affected by 

differences mammographic Version utilised in this project, which may have made the 

differences in DA smaller (and those for AA larger) than would have resulted had only 

mammograms unaffected or less affected by digital post-processing been utilised (e.g. film 

and/or Fuji mammograms).  Strengths of this project include use of a semi-automated technique 

to assess MD which is a well-established method to measure breast density on mammograms.  

The ICC results of the reliability analysis (Aim 2, Chapter 5) imply that the variability of the PD 

measured using the measurement technique for this project is acceptable. Use of all four 

standard mammographic Views enabled a wide range of comparisons for many different MD 

attributes (PD, DA, BA and AA).  
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C. Number of episodes (participants) at each follow up by Version 

 

Table 10‐7 Number of episodes (participants) at each follow up, by mammogram Version 

Mammogram 
Version 

Follow up number (years post‐randomisation)   

0  .5  1  2  3  4  5  6  7  Total 

Film  42  12  8  1  0  0  0  0  0  63 

KE52  28  6  20  41  16  11  1  0  0  123 

KE54  12  7  20  26  45  28  12  1  0  151 

Fuji  0  0  11  25  30  43  51  29  10  199 

Other  3  0  1  0  0  0  0  0  0  4 

Total  85  25  60  93  91  82  64  30  10  540 

 

Baseline to year 1 mammography was primarily confined to film, KE52 and KE54 

mammograms.  Fuji mammograms were taken for some participants commencing from follow 

up 1 onwards, however no Fuji mammograms were taken prior to year 1.  Only one film episode 

occurred after the first year of follow up; film mammograms effectively were taken only from 

baseline to year 1.  A single KE52 episode occurred after year 4, and only one KE54 

mammographic episode was taken after the 5th year follow up.  The majority of episodes which 

occurred between years 5 to 7 were the Fuji mammograms.  A few mammograms of ‘Other’ 

type were taken at baseline and year 1.
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D. Simple regression of baseline PD with different combinations of mammographic Views 

 

Table 10‐8 Single parameter (simple) regression coefficients for single Views or Averages of 2 or 4 Views, baseline PD in mm
2
 and log & square root transformed PD 

Covariate  N* 

PD in mm2 (untransformed)  Log transformed PD  Square root PD 

RCC  LCC 
R 

MLO 

L 

MLO 

R+L 

CC 

R+L 

MLO 

Right 

side 

Left 

side 

All 

Views 
RCC 

R+L 

MLO 

All 

Views 
RCC 

R+L 

MLO 

All 

Views 

85  85  85 84 85 85 85 84 85  85 85 85 85 85 85

Age at Rand.  85  ‐0.251  ‐0.211  ‐0.311 ‐0.191 ‐0.231 ‐0.271 ‐0.28 ‐0.18 ‐0.321 ‐0.051 ‐0.041 ‐0.041 ‐0.051 ‐0.051 ‐0.051

Film‐screen  42  0.05
1
  0.34

1
  0.04

1
0.12

1
0.19

1
0.08

1
0.05

1
0.23

1
0.14

1
‐0.03

1
‐0.02

1
‐0.01

1
‐0.02

1
‐0.01

1
‐<0.001

Digital (CR)  43  ‐0.6  ‐0.67  ‐0.65 ‐0.51 ‐0.6 ‐0.6 ‐0.6 ‐0.6 ‐0.6 ‐0.07 ‐0.06 ‐0.07 ‐0.09 ‐0.09 ‐0.09

 KE52  28  ‐0.7   ‐0.77  ‐0.57 ‐0.54 ‐0.7 ‐0.6 ‐0.6 ‐0.7 ‐0.7  ‐0.08 ‐0.07 ‐0.08 ‐0.09 ‐0.09 ‐0.10

 KE542  12  ‐0.2   ‐0.28  ‐0.44 ‐0.11 ‐0.2 ‐0.3 ‐0.3 ‐0.2 ‐0.3  ‐0.03 ‐0.03 ‐0.03 ‐0.03 ‐0.04 ‐0.04

 Fuji  0  ‐‐  ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

BMI (kg/m2)  85  ‐0.9  ‐0.9  ‐1.0 ‐0.8 ‐0.9 ‐0.9 ‐0.9 ‐0.9 ‐0.9 ‐0.10 ‐0.09 ‐0.09 ‐0.13 ‐0.13 ‐0.13

Film‐screen  42  ‐1.3  ‐1.5  ‐1.4 ‐1.4 ‐1.4 ‐1.4 ‐1.4 ‐1.4 ‐1.4 ‐0.10 ‐0.12 ‐0.12 ‐0.17 ‐0.19 ‐0.19

Digital   43  ‐0.5  ‐0.6  ‐0.6 ‐0.4 ‐0.7 ‐0.5 ‐0.6 ‐0.5 ‐0.6 ‐0.09 ‐0.07 ‐0.07 ‐0.09 ‐0.09 ‐0.09

 KE52  28  ‐0.6  ‐0.8  ‐0.6 ‐0.5 ‐0.6 ‐0.6 ‐0.6 ‐0.6 ‐0.6 ‐0.14 ‐0.12 ‐0.12 ‐0.13 ‐0.12 ‐0.13

 KE542  12  ‐0.5  ‐0.4  ‐0.7 ‐0.3 ‐0.4 ‐0.5 ‐0.6 ‐0.3 ‐0.5 ‐0.03 ‐0.03 ‐0.03 ‐0.06 ‐0.06 ‐0.06

Height (cm)  85  ‐0.3  ‐0.2  ‐0.2 ‐0.1 ‐0.2 ‐0.2 ‐0.2 ‐0.2 ‐0.2 ‐0.02 0.02 0.01 ‐0.01 ‐0.001 ‐0.01

Film‐screen   42  ‐0.5  ‐0.6  ‐0.4 ‐0.3 ‐0.6 ‐0.4 ‐0.5 ‐0.5 ‐0.5 ‐0.01 ‐0.02 ‐0.02 ‐0.05 ‐0.04 ‐0.04

Digital   43  0.2  0.2  0.1 0.2 0.2 0.1 0.1 0.2 0.2  0.03 0.06 0.05 0.03 0.05 0.04

Weight (kg)  85  ‐0.3  ‐0.3  ‐0.3 ‐0.3 ‐0.3 ‐0.3 ‐0.3 ‐0.3 ‐0.3 ‐0.03 ‐0.02 ‐0.02 ‐0.04 ‐0.04 ‐0.04

Film‐screen   42  ‐0.4  ‐0.5  ‐0.4 ‐0.4 ‐0.5 ‐0.4 ‐0.4 ‐0.4 ‐0.4 ‐0.03 ‐0.03 ‐0.03 ‐0.05 ‐0.05 ‐0.06

Digital   43  ‐0.2  ‐0.2  ‐0.2 ‐0.1 ‐0.2 ‐0.2 ‐0.2 ‐0.1 ‐0.2 ‐0.02 ‐0.01 ‐0.02 ‐0.03 ‐0.02 ‐0.02

Menarche 
(age in years) 

85  0.8  0.7  0.7  0.6  0.8  0.6  0.7  0.7  0.7  0.05  0.07  0.06  0.09  0.10  0.10 

Film‐screen   42  1.0  1.0  0.8 0.8 1.0 0.8 0.9 1.0 0.9  0.11 0.12 0.11 0.16 0.15 0.15

Digital   43  ‐1.0  1.2  0.8 ‐0.9 ‐1.0 ‐0.9 ‐0.9 ‐0.9 1.2  ‐0.07 ‐0.06 ‐0.07 ‐0.13 ‐0.10 ‐0.10

Age at First 
Birth (years) 

80  0.7  0.5  0.5  0.5  0.6  0.6  0.6  0.5  0.6  0.05  0.04  0.04  0.08  0.07  0.07 

Film‐screen   42  ‐0.1  0.03  ‐0.3 0.1 ‐0.03 ‐0.1 ‐0.2 0.05 ‐0.1 ‐0.02 ‐0.02 ‐0.02 ‐0.02 ‐0.02 ‐0.01
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Covariate  N* 

PD in mm2 (untransformed)  Log transformed PD  Square root PD 

RCC  LCC 
R 

MLO 

L 

MLO 

R+L 

CC 

R+L 

MLO 

Right 

side 

Left 

side 

All 

Views 
RCC 

R+L 

MLO 

All 

Views 
RCC 

R+L 

MLO 

All 

Views 

85  85  85 84 85 85 85 84 85  85 85 85 85 85 85

Digital  38  1.0  0.6  0.9 0.8 0.8 0.9 1.0 0.07 0.8  0.10 0.07 0.07 0.14 0.11 0.11

Menopause (age 
in years) 

85  0.6  0.6  0.5  0.5  0.6  0.5  0.6  0.6  0.6  0.05  0.05  0.05  0.08  0.07  0.08 

Film‐screen   42  0.5  0.5  0.3 0.3 0.5 0.3 0.4 0.4 0.4  0.01 0.01 0.01 0.04 0.03 0.04

Digital  43  0.4  0.5  0.4 0.4 0.4 0.4 0.4 0.4 0.4  0.06 0.07 0.07 0.07 0.08 0.08

HRT (months)  85  ‐0.02  ‐0.03  ‐0.03 ‐0.02 ‐0.03 ‐0.03 ‐0.03 ‐0.02 ‐0.03 ‐0.004 ‐0.003 ‐0.003 ‐0.005 ‐0.004 ‐0.004

Film‐screen   42  0.03  0.04  0.04 0.03 0.03 0.03 0.03 0.03 0.03 ‐0.003 0.003 ‐0.003 0.004 ‐0.005 0.005

Digital  43  ‐0.05  ‐0.05  ‐0.05 ‐0.04 ‐0.05 ‐0.05 ‐0.05 ‐0.04 ‐0.05 ‐0.006 ‐0.005 ‐0.005 ‐0.008 ‐0.007 ‐0.007

Oral contra‐
ceptives (months) 

85  0.006  0.01  0.003  0.01  0.006  0.006  0.004  0.006  0.01  0.001  0.001  0.001  0.001  0.001  0.001 

Film‐screen   42  0.01  0.01  0.001 0.01 0.02 0.005 0.003 0.01 0.01 0.001 <0.001 <0.001 0.001 0.001 0.001

Digital  43  0.02  0.02  0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.002 0.003 0.003 0.003 0.003 0.003

Weighted # rels 
w BC OC 

85  0.6  0.4  0.7  0.4  0.5  0.6  0.6  0.4  0.5  0.02  0.01  0.01  0.06  0.05  0.05 

Film‐screen   42  1.33  1.13  1.63 1.33 1.23 1.53 1.53 1.23 1.33 0.05 0.06 0.05 0.13 0.14 0.13

Digital  43  0.3  0.2  0.5 0.2 0.3 0.3 0.5 0. 0.3  0.02 ‐<0.001 ‐<0.001 0.06 0.03 0.04

Nulliparous 
(yes /no(ref)) 

85  ‐5  ‐4  ‐5  ‐6  ‐4  ‐5  ‐5  ‐5  ‐5  ‐0.03  ‐0.6  ‐0.4  ‐0.4  ‐0.6  ‐0.5 

Smoking status ‐ 
never 

44  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref. 

Current  9  2  2.7  0.6 3 2.2 1.8 1.2 3 2  0.41 0.33 0.36 0.34 0.41 0.3

Ex‐smoker  32  ‐2  ‐1.4  ‐3 ‐1.3 ‐1.5 ‐2.4 ‐2.4 ‐1 ‐2  ‐0.10 ‐0.07 ‐0.07 ‐0.19 ‐0.26 ‐0.21

Weighted  # of 
relatives4 One 1st 

30  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref. 

One 1st + 1 2nd  21  ‐3  ‐2  ‐3 ‐2 ‐3 ‐3 ‐3 ‐2 ‐3  ‐0.50 ‐0.56 ‐0.53 ‐0.57 ‐0.64 ‐0.59

Two 1st   17  1  ‐0.7  0.2 0.4 0.2 0.3 0.6 ‐0.2 0.2  0.07 ‐0.13 ‐0.08 0.15 ‐0.02 ‐0.002

One 1st+1 2nd+  14  5  3  6 4 4 5 5 3 4  0.05 0.004 ‐0.005 0.37 0.31 0.28

Mammogram 
Type ‐film 

42  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref. 
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Covariate  N* 

PD in mm2 (untransformed)  Log transformed PD  Square root PD 

RCC  LCC 
R 

MLO 

L 

MLO 

R+L 

CC 

R+L 

MLO 

Right 

side 

Left 

side 

All 

Views 
RCC 

R+L 

MLO 

All 

Views 
RCC 

R+L 

MLO 

All 

Views 

85  85  85 84 85 85 85 84 85  85 85 85 85 85 85

Digital  43  ‐10.7  ‐9.0  ‐9.5 ‐8.5 ‐9.9 ‐9.2 ‐10.1 ‐8.6 ‐9.5 ‐0.58 ‐0.58 ‐0.57 ‐1.13 ‐1.05 ‐1.06

Mammogram 
Version5‐ film 

42  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref.  ref. 

 KE52  28  ‐11.7  ‐9.5  ‐11.1 ‐9.3 ‐10.6 ‐11.7 ‐11.5 ‐9.0 ‐10.5 ‐0.69 ‐0.62 ‐0.62 ‐1.26 ‐1.16 ‐1.15

 KE54  12  ‐9.7  ‐9.0  ‐8.2 ‐9.6 ‐9.3 ‐9.7 ‐9.0 ‐9.3 ‐9.1 ‐0.38 ‐0.36 ‐0.38 ‐0.96 ‐0.92 ‐0.93

 Fuji  0  ‐‐  ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
         

MLO mmgs vs   
CC (ref)6 

  N/A  N/A  N/A  N/A  N/A  N/A  ‐1.0  ‐1.0  ‐1.06  N/A  N/A  0.04  N/A  N/A  ‐1.0 

Left mmgs vs 
Right (ref)6 

  N/A  N/A  N/A  N/A  0.006  0.03  N/A  N/A  0.02  N/A  0.03  0.07  N/A  0.03  0.05 

Mammogram 
View6‐ RCC 

  N/A  N/A  N/A  N/A  ref.  N/A  ref.  N/A  ref.  N/A  N/A  ref.  N/A  N/A  ref. 

LCC    N/A  N/A  N/A N/A 0.006 N/A N/A ref. 0.006 N/A N/A 0.08 N/A N/A 0.05

RMLO    N/A  N/A  N/A N/A N/A ref. ‐1.0 N/A ‐1.1 N/A ref. ‐0.03 N/A ref. ‐0.10

LMLO    N/A  N/A  N/A N/A N/A 0.03 N/A ‐1.0 ‐1.0 N/A 0.03 0.03 N/A ‐0.57 ‐0.05

Bold indicates the coefficient (β) is significant (p<0.05); ref. denotes the reference category; N/A = not applicable 
*N (down, 2nd column) indicates the number of participants; N (across, 3rd row) indicates the total # of mammograms per group 
1 If one influential participant with PD≥75% excluded (outlier on residual vs fitted plot), the coefficient increases in magnitude and R2 increases 
2 KE54 baseline mammograms are few in number (n=12), hence coefficients by Type only (film vs digital CR) are subsequently reported 
3 Relationship decreases (smaller coefficient and R2) when participant with influential PD≥75% is omitted 
4 Three women with a single 2nd degree relative omitted, due to influential diagnostic outliers; p=0.04 for trend for women <60 years at Randomisation (n=45) 
5 Three mammograms of Version ‘other’ omitted from the comparison 
6 Individual baseline mammograms (Views) utilised for this comparison, not PD averages for each baseline episode as for the rest of the table
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E. Three-Level Unconditional Means and Unconditional Growth Models  
Mixed modelling coefficients, Unconditional Means models (PD, DA, BA)

Covariate 
 PD 
 % 

 PD 
 sqrt 

 DA 
 mm2 

DA
 sqrt 

BA
 mm2 

BA
 sqrt 

ALL MMGS, 2126 episodes, 541 episodes, 120 participants 

FE Intercept  16.5***  3.8***  2906*** 50*** 19016*** 135***

Random Effect (RE) variance estimates

Between–person Random Effects   
   Intercept  126  2.0  4.03x106 348 51.7x107 661

Mammogram 
Version 

16.6  0.22  501073   36.4  933861  9.8 

Within  Version  13.4  0.19  497031 37.2 1.9x106 24.8
ICC1  0.81  0.83  0.80  0.83 0.95 0.95

Model fit statistics
Log Likelihood  ‐6332  ‐1826  ‐17487  ‐7394 ‐18908 ‐6938
AIC  12673  3660  34982  14796 37825 13885
BIC  12695  3683  35005  14818 37847 13907

Bold indicates p≤0.1; * p<0.05;  ** p<0.01; *** p<0.001; † p<0.2 
FE fixed effects 
1 ICC calculated as Between–person intercept variance/total Variance where total 
Variance = (Between–person intercept Variance +  mammogram Version Variance 
+ Within–person Variance) 
 

Mixed modelling coefficients, Unconditional Growth models (PD, DA, BA)

Covariate  PD   %  PD  sqrt DA  mm2 DA  sqrt BA  mm2 BA  sqrt

ALL MMGS, 2126 episodes, 541 episodes, 120 participants

Categorical time FE estimates

Months 0 (ref)  0 (ref) 0 (ref) 0 (ref) 0 (ref) 0 (ref)

6 ‐1.21*  ‐0.12 ‐260* ‐1.6‡ 341 1.1‡

12 ‐1.87*** ‐0.22*** ‐335*** ‐2.8*** 234‡ 0.9‡

24 ‐2.33*** ‐0.25*** ‐424*** ‐3.0*** 244‡ 1.0

36 ‐1.68** ‐0.16* ‐296** ‐1.8 489** 1.8** 

48 ‐0.59  ‐0.04 ‐153† ‐0.41 387 1.4

60  0.05  0.06 55 1.5† 622** 2.1** 

72  0.62  0.12 127 2.4 789** 2.6*  

84  2.46  0.32* 359‡ 4.7* 899* 3.1*  

Intercept 17.7*** 3.9*** 3109*** 51*** 18652*** 134***

Continuous time FE estimates

Change/year  0.021        0.013   8.2 0.3 113** 0.4** 

Intercept  16.6*** 3.7*** 2890*** 49.2*** 18726*** 134***

Continuous time RE variance estimates 

Between–person Random Effects
  Time (years)  0.55  0.008 13019 1.3 91167 1.2
  Intercept  137  2.1 4.5x106 390 51x106 652
  Covariance ‐2.7  ‐0.05 ‐118950 ‐11.1 141987 0.9
Mmg Version  13.6  0.18 429519 30.2 473419 4.4
Within Version  13.3  0.19 496658 37.1 1871391 24.5
Correlation1 ‐0.31  ‐0.39 ‐0.49 ‐0.49 0.07 0.03

Continuous time model fit statistics
Log Likelihood ‐6327  ‐1821 ‐17483 ‐7388 ‐18883 ‐6911
AIC 12668  3656 34980 14790 37779 13837
BIC 12708  3695 35019 14830 37819 13876

Bold indicates p≤0.1; * p<0.05;  ** p<0.01; *** p<0.001; †
 
p<0.2 

1 Correlation calculated as the Between–person (BP) covariance divided by the square root of 
(BP variance for time x BP intercept variance) 
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F. Three-Level Full and Parsimonious Models of PD, DA and BA 

Covariate 
PD %  PD square roota DA mm2 DA square roota BA mm2 BA square roota

Full  Parsimon  Full Parsimon Full Parsimon Full Parsimon Full Parsimon Full Parsimon

ALL MAMMOGRAMS
2126 mammograms, 540 episodes (follow ups) 120 participants  

Age at Rand. (yrs)  ‐0.28‡  ‐0.24‡  ‐0.05* ‐0.04 ‐33 ‐18 ‐0.43† ‐0.21 123† ‐‐ 0.5‡ ‐‐            
BMI (kg/m2)  ‐0.88***  ‐0.88***  ‐0.12*** ‐0.12*** ‐36 ‐‐ ‐0.46 ‐‐  973*** 948*** 3.5*** 3.4***
Menarche (yrs)   0.08  ‐‐   0.01 ‐‐ 47 ‐‐ 0.46 ‐‐  381‡ 417‡ 1.6 1.8
Menopause (yrs)   0.37*   0.35*   0.06** 0.05** 81** 80** 0.89**  0.85** 37 ‐‐ 0.2 ‐‐    
Age First Birth <30y   ref   ref    ref ref  ref ref  ref  ref   ref ref  ref ref 
 ≥ 30 years   7.3   7.6   1.1* 1.1* 2085** 2039** 19**  19** 5115** 4826* 17* 16*  
Non‐parous  ‐0.36   0.11  ‐0.04 0.05 688 929† 5.1†  7.6  3129‡ 2929‡ 11.9 11.2
OC use ‐ Never   ref  ‐‐   ref ‐‐ ref ‐‐ ref ‐‐  ref ‐‐ ref ‐‐
   Ever users  ‐1.9  ‐‐  ‐0.38 ‐‐ ‐661 ‐‐ ‐6.2 ‐‐  ‐189 ‐‐ ‐1.3 ‐‐
HRT – Never   ref  ‐‐   ref ‐‐ ref ‐‐ ref ‐‐  ref ‐‐ ref ‐‐
  Ever users  ‐0.1  ‐‐   0.06 ‐‐ ‐236 ‐‐ ‐1.6 ‐‐  ‐996 ‐‐ ‐4.0 ‐‐
Smoking‐ never   ref  ‐‐   ref ‐‐ ref ‐‐ ref ‐‐  ref ref  ref ref 
Current   0.84  ‐‐   0.24 ‐‐ ‐44 ‐‐ 3.1 ‐‐  3700* 3293* 13* 11*  
Ex‐smoker   0.8  ‐‐   0.12 ‐‐ ‐14 ‐‐ 0.4 ‐‐  ‐1010 ‐1183 ‐3.0 ‐3.8
IBIS‐1 No(ref) v Yes   0.95  ‐‐   0.23 ‐‐ 218 ‐‐ 3.2 ‐‐  ‐444 ‐‐ ‐1.9 ‐‐
CC (ref) vs MLO   ‐1.6***  ‐1.6***  ‐0.18*** ‐0.18*** ‐177*** ‐177*** ‐1.5*** ‐1.5*** 474*** 474*** 2.1 2.1***
Mammogram 
Version5‐ film 

 ref   ref    ref   ref    ref   ref    ref   ref    ref   ref    ref   ref  

 KE52  ‐8.9***  ‐8.9***  ‐0.90*** ‐0.91*** ‐1523*** ‐1519*** ‐13*** ‐13*** ‐44.00 ‐45.80 0.10 0.1
 KE54  ‐7.1***  ‐7.1***  ‐0.62*** ‐0.63*** ‐1181*** ‐1181*** ‐9*** ‐9*** ‐46.64 ‐50.06 0.10 0.08
 Fuji  ‐5.3***  ‐5.3***  ‐0.45*** ‐0.45*** ‐978*** ‐985*** ‐8*** ‐8*** ‐396 ‐401 ‐1.1 ‐1.2
Intercept   33.4***   29.9***   5.96*** 5.39*** 6026*** 4133*** 77***  61*** 14691*** 13988*** 121*** 117***

Annual change in MD (All mammograms) 

Baseline to Year 1  ‐0.61†  ‐0.61†  ‐0.11* ‐0.11* ‐139 ‐138 ‐1.19 ‐1.16 188 193 0.60 0.62
Years 1 to 5   0.54**   0.54**   0.06* 0.06* 123** 126** 1.07**  1.09** 173* 174* 0.6 0.6
Years 5 to 7  ‐0.17  ‐0.17   0.01 0.01 ‐9.29 ‐9.20 0.05  0.05 323* 323* 1.2*   1.2*  
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Covariate 
PD %  PD square roota DA mm2 DA square roota BA mm2 BA square roota

Full  Parsimon  Full Parsimon Full Parsimon Full Parsimon Full Parsimon Full Parsimon

Random effects estimates for between–person, between–mammogram Version and within–person change

Between–person random slopes     
Baseline to Year1   2.4   2.4   0.08 0.08 446 446 2.8  2.8  696 692 2.6 2.6
Year 1 to Year 5  ‐‐  ‐‐  ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐  352 353 1.2 1.2
Correlation  ‐0.35  ‐0.36  ‐0.34 ‐0.34 ‐0.68 ‐0.66 ‐0.65 ‐0.65 ‐‐ ‐‐ ‐‐ ‐‐
Between person 
Intercept 

 10.1   10.1   1.2   1.2   2013   2028   17.7   18.1   4566   4637   16.4   16.8 

Between Version 
intercept 

 2.3   2.4   0.28   0.27   399   399   3.7   3.7   617   617   1.8   1.8 

Within Version 
variance 

 3.5   3.5   0.43   0.43   694   694   6.0   6.0   1340   1340   4.8   4.8 

Statistics of model fitb

Log–likelihood  ‐6165  ‐6166  ‐1666 ‐1667 ‐17359 ‐17361 ‐7273 ‐7276 ‐18794 ‐18796 ‐6807 ‐6809
AIC    12378   12367   3379 3369 34766 34756 14594  14587 37636 37629 13662 13657
BIC   12514   12469   3515 3471 34902 34853 14730  14683 37772 37737 13798 13765

FILM mammograms only: Annual change in MD  
248 mammograms, 63 episodes , 45 participants 

   Baseline to Year 1  ‐1.8**  ‐1.8**  ‐0.2** ‐0.2** ‐303* ‐306* ‐2.3* ‐2.4* ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐

DIGITAL mammograms only: Annual change in MD 
1878 mammograms, 434 episodes, 120 participants 

   Baseline to Year 1  ‐0.88*  ‐0.88*  ‐0.12* ‐0.12* ‐172* ‐169* ‐1.5* ‐1.5* 216† 219† 0.74‡ 0.75†
   Years 1 to 5   0.66**   0.65**   0.08** 0.08** 138** 140** 1.3**  1.3  167* 168* 0.54 0.55
   Years 5 to 7  ‐0.10  ‐0.11  ‐0.004 ‐0.005  4.1  5.2 0.25  0.26 324* 323* 1.11* 1.11*

Parsimon parsimonious model; ref reference category; y yrs years; ‐‐ not applicable; mmg mammogram;  
Parsimonious model columns list only parameters with p≤0.1 (age‐adjusted, except BA) 
Bold p≤0.1; * p<0.05; ** p<0.01; *** p<0.001; ‡ p<0.15; † p<0.2;    
a Coefficients for square root transformed parameters are shown in transformed units; they have not been back‐transformed. 
b The LL, AIC, BIC statistics of model fit were generated by models which utilise an average of the imputed value for menopause age 

 

 


